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Fall 2014 Problem 6. Let G be a finite group and let p be the smallest prime number dividing the order of
G. Assume G has a normal subgroup H of order p. Show that H is contained in the center of G.

Conjugating elements of H by G is a group action since H is a normal subgroup. The fixed points of the action
are exactly the elements of H in Z(G). Thus p = [H| = |Z(G) n H| + 3,45 |Orb(h)|. The identity is contained
in H and Z(G) which implies |H n Z(G)| = 1 and |Orb(h)| < p for all h ¢ Z(G). Orbit-Stabilizer gives us
|Orb(h)| = [G : Stab(h)] so |Orb(h)| divides |G|. Since p is the smallest prime that divides |G|, we conclude there
are no elements h ¢ Z(G). Thus H < Z(G).

Spring 2016 Problem 9. Show that if GG is a finite group acting transitively on a set X with at least two
elements, then there exists g € G which fixes no point of X.

Let n = |G| and k = |X| = 2. Define Fix(g) = {# € X : g- 2 = z}. For each g € Stab(x), we have
z € Fix(g) = {x € X : gv = z} and visa versa. We conclude >,y [Stab(z)| = >} . [Fix(g)|. By Orbit-Stabilizer
and |G| finite, |Stab(z)| = |G|/|Orb(z)| for all z € X. But G acts transitively on X so |Orb(x)| = |X| = k and
|Stab(z)| = 7. Then > . [Fix(g)| = X,cx & = n- Since |Fix(e)| = k > 2, we have }, o . [Fix(g)| <n —1. If
all non-identity g € G have |Fix(g)| = 1, we would have }’ |[Fix(¢g)] = n — 1. By the pigeonhole principle,
there is some g such that |Fix(g)| = 0 as desired.

geG,g#e

Fall 2018 Problem 1. Let Qg = {£1, +i, +j, £k} be the quaternion group of order 8.

(a) Show that every non-trivial subgroup of Qg contains —1.

Let H < Qg be a non-trivial subgroup. If —1 € H, then we are done. Otherwise, one of {+i, +j, +k} is in H.
But (£i)? = (£5)? = (+£k)? = —1 € H. Therefore, each non-trivial subgroup of Qg contains —1.

(b) Show that Qs does not embed in the symmetric group S7 (as a subgroup).

Let ¢ : Qs — S7 be an injective group homomorphism. This defines a group action of Qg on the set X =
{z1,...,27} via g - ¥ = 24(g)) for g € Qg. The orbits of the action partition X so [X| = > _ |Orb(z)|.
By Orbit-Stabilizer, |Orb(z)| = [Qs : Stab(z)] = |Q@s|/|Stab(z)| by |Qs| finite. Note Stab(z) is a non-trivial
subgroup of Qg for all z € X since |Qg|/|Stab(z)| = 8 > 7, a contradiction. By (a), —1 € Stab(z) for all z € X
s0 ¢(—1) = e. This contradicts the injectivity of ¢.

Spring 2019 Problem 8. Prove that every finite group of order n is isomorphic to a subgroup of GL,_1(C).

By Cayley’s Theorem, there is an injective homomorphism from G to S,,. There is an injective homomorphism S,
to GL,,(C) given by permuting the elements of C™ once a basis has been chosen. Let v € C™ be the vector of all 1s,
which is an eigenvector for each permutation matrix. Each permutation matrix in the basis 8 = {v, es,...,e,} for
C™ will be a block matrix of (1) and a permutation matrix in GL,_1(C). Thus there is an injective homomorphism
of S, to GL,_1(C). Compose this with the injection from Cayley’s Theorem to prove the claim.



Spring 2020 Problem 7. Let G be a finite p-group and 1 # N < G be a non-trivial normal subgroup.

(a)

Show that N contains a non-trivial element of the center Z(G) of G.

Conjugating elements of N by G is a group action since N is a normal subgroup. The fixed points of the
action are exactly the elements of N in Z(G). Thus [N| = |Z(G) n N|+ Xy nez(q) |Orb(h)|. The identity is
contained in N and Z(G) which implies |N n Z(G)| = 1. By Orbit-Stabilizer, |Orb(h)| = |G|/|Stab(h)|, which
is divisible by p. Then [N|—=3cn ngz(q) |Orb(h)| = |Z(G) n N| is divisible by p, and there is some non-trivial
element of Z(G) n N.

We will cover the non-finite case when we talk about Sylow p-subgroups.

Give an example where Z(N) ¢ Z(G).

Take G = Dy, the dihedral group of order 8. Let N = {r) be the cyclic subgroup of G generated by rotation
by % counter-clockwise. Then Z(N) = N but Z(G) = (r?).
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A free group is a group containing all words on a set of letters S. Given a function f from S to G, there exists
a unique group homomorphism ¢ : F' — G such that ¢ restricts to f on X.

Spring 2017 Problem 3. Find the number of subgroups of index 3 in the free group Fy = {u,v) on two
generators. Justify your answer.

Let X = {1,2,3} be a set of order 3. Assume there is a transitive group action of F5 on X. Then Stab(1) is a
subgroup of G with [G : Stab(1)] = |Orb(1)| = 3 by Orbit-Stabilizer. Now assume H is an index 3 subgroup of
F5. Then the set Fy/H of left cosets has order 3. We have a transitive group action of Fy on the set Fy/H given
by left multiplication. Let g € F5. We have g - H = H if and only if g € H. As a result, Stab(H) = H. The two
situations describe a bijection between index 3 subgroups of G and stabilizers of transitive group actions on sets of
three elements.

We will find the number of transitive group actions of Fy on the set X = {1,2,3} with H := Stab(1). In the
case of |X| = 3, this is equivalent to finding a homomorphism ¢ : F» — S5 whose image contains a 3-cycle. The
image of u and v under ¢ uniquely determines ¢ by the universal property of free groups. We will break into cases.
Note that 2 and 3 can are interchangeable so ¢(u) = (13) cases produce the same stabilizers of 1 as the ¢(u) = (12)
cases. Similarly, we do not have to consider ¢(u) = (132).

¢(u) = e implies ¢(v) € {(123), (132)}

¢(u) = (12) implies ¢(v) € {(13), (23), (123), (132)}

o(u) = (23) implies ¢(v) € {(12), (13), (123), (132)}

o(u) = (123) implies ¢(v) € {e, (12), (13), (23), (123), (132)}

The symmetry of 2 and 3 also allows us to remove the cases {¢(u) = e, p(v) = (132)}, {p(u) = (23), d(v) = (13)},
and {¢(u) = (23), ¢p(v) = (132)}. We are left with 13 suitable group homomorphisms ¢ : F5 — Sz for which Stab(1)
determines all distinct subgroups of Fy of index 3.

Let S be a subset of a group G. The normalizer Ng(S) = {g€ G : gSg~* = S}. We can prove that Ng(S) is a
subgroup of G. Note that for S = H, a subgroup of G, H is a normal subgroup of Ng(H).

The commutator subgroup [G,G] of a group G is the subgroup generated by ghg=th~! for g,h € G. It is the
smallest subgroup of G such that G/[G, G] is an abelian group. In other words, G/N is abelian if and only if N
contains [G, G].

Fall 2017 Problem 2. Let G be a finite group of order a power of a prime number p. Let ®(G) be the subgroup
of G generated by elements of the form g? for g € G and ghg='h~! for g,h € G. Show that ®(G) is the intersection
of the maximal proper subgroups of G.

Let G be a p-group that acts on a finite set X. We will first show that | X“| = | X| (mod p) where
X% ={ze X :|Orb(z)| = 1}.
The orbits partition X so
X=X+ )] |Orb(a)].

zeX,x¢ XC



By Orbit-Stabilizer, |Orb(z)| = [G : Stab(x)] = |G|/|Stab(z)| with |G| finite. For each z ¢ X, we have
|Orb(z)| = |G|/|Stab(z)| > 1

so p will divide |G|/|Stab(z)| = |Orb(z)|. Therefore, |X| = |X¢| modulo p.

Let |G| = p*. Let H G be a maximal proper subgroup of G so |H| = p*~1. Let H act on the left cosets of
H in G by left multiplication. If aH € X then b(aH) = aH for all b€ H. Thus aba™' € H and a € Ng(H).
Similarly, taking some a € Ng(H) gives aH € X . Therefore, X = [Ng(H) : H] and the above result implies
[Ng(H): H] =[G : H] =0 (mod p). Then index [Ng(H) : H] divides [G : H]| so it is either 1 or p. We conclude
that [Ng(H) : H] = p and Ng(H) = G since |H| = p*~!. Thus H is a normal subgroup of G so the set G/H is a
group of order p. The only such group is the cyclic group Z/pZ so G/H ~ Z/pZ. If g ¢ H for g € G, then gH is a
generator of G/H so (¢H)? = gPH = H. H contains elements of the form ¢? for g € G. Further, G/H is abelian
so the canonical projection p : G — G/H factors through 7 : G/[G, G] for [G, G] the commutator subgroup. Thus
ker(m) = [G,G] < ker(p) = H and H contains all elements of the form ghg='h~! for g,h € H. Therefore, ®(G) is
contained in the intersection of the maximal proper subgroups of G.

For each g ¢ ®(G), we want to show that there is a maximal proper subgroup M < G that does not contain g.
The commutator subgroup of G is normal. Let g,h € G. Then hg?h™! = (hgh™)P € ®(G) so ®(G) is a normal
subgroup of G. Every element g € G with g ¢ ®(G) corresponds to a coset § = gP(G) € G/P(G). By g* € ®(G) for
all g e G, G/®(G) is a group where each element divides order p. Since the commutator subgroup is contained in
®(G), G/®(G) is a finite abelian group with only elements of order dividing p. We can view G/®(G) as an F-vector
space so take an F)-basis {g,Z1,..., Tk} for G/®(G). Let z; be a lift of Z; in G. Define the subgroup M generated
by ®(G) u {z1,...,z}. Since g ¢ M by construction, M is a proper subgroup of G. Further, M u {g} = G so
G is a maximal proper subgroup of G that does not contain g. We conclude that the intersection of the maximal
proper subgroups of G is contained in ®(G).

The set of automorphisms of a group G forms a group, denoted Aut(G). The set of inner automorphisms, those
represented by conjugation by some g € G, is a subgroup of Aut(G). We denote these Inn(G).

Fall 2018 Problem 2. Let G be a finitely generated infinite group having a subgroup of finite index n > 1.
Show that G has finitely many subgroups of index n and has a proper characteristic subgroup (i.e. preserved by
all automorphisms) of finite index.

There are finite groups for which the statement does not hold. Conjugation by an element of a group is an
automorphism of the group (called an inner automorphism). Thus every characteristic subgroup of a group is
normal. The finite group As is simple and thus contains no non-trivial characteristic subgroups. Assume G is
infinite.

Let H < G be a subgroup of index n. Then G acts on the set of left cosets G/H = {1 H, g2H, . .., g, H} via left
multiplication. This defines a group homomorphism ¢ : G — S, such that g-g;H = g4(4);)H. Note that g- H = H
if and only if g € H. Thus Stab(H) = H implying a one-to-one correspondence between the index n subgroups of
G and homomorphisms ¢ : G — S,,. Let G be finitely generated by {z1,...,2;}, say. Then the image of each z;
in S,, determine uniquely each homomorphism ¢ : G — S,,. There are n! choices for the image of each z; so there
are finitely many homomorphisms ¢ : G — S,,. We conclude there are finitely many index n subgroups of G.

Let 0 € Aut(G) and H < G be the index n subgroup in the problem statement. Now o(H) is a subgroup of
G since o is an automorphism. Note that the cosets are o(G)/o(H) = G/o(H) = {o(g1)o(H),...,0(gn)o(H)} so
o(H) is an index n subgroup of G. Define N := ﬂgeAut(G) o(H). There are finitely many index n subgroups of G so
N = ﬂ;il H; for some index n subgroups H; < G. We want to show that N is a proper characteristic subgroup of
finite index in G. It is clear that N is a subgroup that is fixed under all automorphisms of G. We can define a group
action of G on [[", G/H; by component-wise left multiplication. Then Stab(Hi, Ha,...,Hy,) = ()ir; Hi = N
since gH; = H; if and only if g € H;. By Orbit-Stabilizer,

(G N] =[G : Stab(Hy, Hy, ..., Hy)] = |Otb(Hy, Ha, ..., Hy)| < [Otb(Hy)| -+ |Orb(Hy)| = [G : Hy] -+ [G : Hyl-

Since each H; is of finite index, [G : N] is finite. Therefore, N is a characteristic subgroup of G of finite index.
Note that IV cannot be all of G since it is a subgroup of a H and N is not trivial since it is a finite index subgroup
of an infinite group.



Fall 2015 Problem 8. Let F be a field. Show that the group SL(2, F) is generated by the matrices ((1) i)

and (i (1)> for elements e in F'.

The group SL(2, F') is all 2 x 2 contains matrices with determinant one. Let A = (Z Z) be a general matrix
in SL(2, F). Case 1: Ifa =0 or d =0, then ¢ = —b~1.
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Case 2: If b=0or c=0, then d = a~ .
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Then (b=t 1711 + (ac™H)(b71d)) = be(l + ab~lc™1d) = be + ad, the first row, first column entry above. We
conclude SL(2, F) is generated by (é i) and (i (1)> foree F.

Case 3: Assuming nonzero a,b,c,d € F, then A = <

Fall 2015 Problem 10. Let p be a prime number. For each abelian group K of order p?, how many subgroups
H of Z? are there with Z3/H isomorphic to K.

Note that Z3 is abelian so each subgroup H c Z?2 is normal. Let S be the set of surjective group homomorphisms
f:7% — K and T be the set of all subgroups H of Z? for which Z3/H ~ K. Then define a set map ® : S — T by
®(f) = ker(f). Let Aut(K) be the group automorphism of K, and Aut(K) acts on S by post-composition. Denote
by S/Aut(K) the set of orbits of S under the action by Aut(K). Let o € Aut(K), then ker(o o f) = ker(f) since o
is injective. As a result, ® : S/Aut(K) — T is a well-defined set map. Surjectivity of ® follows from the fact that
each subgroup H for which Z3/H ~ K defines a surjective group homomorphism f : Z3 — Z3/H ~ K.

We want to show that @ is injective. Let f,g € S such that ker(f) = ker(g). By the universal property of
quotients, f factors through Z3/ker(f), and there is some isomorphism « : Z3/ker(f) — K such that a o = f for
7 Z3 — 73/H the canonical quotient homomorphism. Similarly, fom = g for an isomorphism f3 : Z3/ker(g) — K.
Then f = (a0 B71) o g where (o 1) € Aut(K), and f and g are in the same Aut(K)-orbit of S. We conclude
that @ is a bijection.

It is sufficient to find the number of surjective group homomorphisms f : Z> — K for each K. There are only
two abelian groups of order p?: Z/p*Z and Z/pZ x Z/pZ. Case 1: Let K = Z/p?Z. We need only find images
for the 3 generators of the free abelian group Z3. Let z,y € Z/p*Z be non-generating elements. They are classes
represented by integers divisible by p. Then representatives of x 4+ y are divisible by p and = + y does not generate
7/p*7. Thus at least one of the generators of Z2 must map to a generator of Z/p*Z in order for the homomorphism
to be surjective. There are ¢(p?) = p? — p generators of Z/p?Z for Euler’s totient function ¢. There are p® total



homomorphisms and p® homomorphisms that are not surjective. Since |Aut(Z/p*Z)| = ¢(Z/p*Z) = p* — p, there
are ’;;ii = p* + p® + p? total subgroups H of Z3 for which Z3/H ~ Z/p*Z.

Case 2: Let K = Z/pZ x Z/pZ. Once again, we need only find images for the 3 generators of the free abelian
group Z3. Note that K is no longer generated by just one element. For the homomorphism to be surjective, we
need the image of at least two of the generators of Z3 to map to generators of K. This equates to sending one
generator to a nontrivial element a € K and sending a second to an element outside the subgroup generated by a
in K. The subgroup generated by a will have order p. We have three scenarios. If the first generator is sent to a
nonzero a € K, we have (p?> — 1)(p*® — p)(p?) + (p*> — 1)(p)(p*® — p) options depending on the image of the second
generator. If the first generator is sent to zero, we have (p* — 1)(p? — p) options. In total, we have pb — p* —p3 +p

surjective homomorphisms. There are (p? — 1)(p? — p) = p* — p® — p? + p automorphisms of K which implies

M% = p? + p + 1 subgroups H of Z3 such that Z3/H ~ Z/pZ x Z/pZ.

Spring 2017 Problem 1, Fall 2019 Problem 6. Choose a representative for every conjugacy class in the
group GL(2,R). Justify your answer.

Each conjugacy class of matrices in GL(2,R) has a unique representative in rational canonical form. For 2 x 2
matrices, the invariant factors of A € GL(2,R) could be {f} for f = 22 —ax—b e R[x] or {g, h} where g|h. Since the
sum of the degrees of g and h is 2, we see that deg(g) = deg(h) = 1. We can take g and h monicso g=h =z —¢
for some ¢ € R. Thus the possible rational canonical forms for a matrix in GL(2,R) are

()0

for a,b,c e R. Each conjugacy classes of GL(2,R) has a representative of the form above.
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We will briefly review Sylow’s Theorems and semi-direct products. Let G be a finite group with |G| = p"m
where n > 1 and ged(p,m) = 1.

(1) For every prime factor p of |G|, there exists a Sylow p-subgroup of G.

(2) All Sylow p-subgroups are conjugate by some element of G.

3) Let n, be the number of distinct Sylow p-subgroups of G. Then n,, divides m and n, =1 (mod p).
P P P

A semi-direct product of two groups H and K, denoted H x, K, is the direct product as a set with multiplication
defined as (h1, k1) - (ha, k2) = (h1o(k1)(he), k1k2) where ¢ : K — Aut(H) is a group homomorphism. In particular,
the homomorphism ¢ determines conjugation of an element in H by an element in K:

(67 k) ’ (h7 e) ’ (e’ k)_l = (@(k)(h)v 6).

If the homomorphism ¢ : K — Aut(H) is trivial, the semi-direct product is the standard direct product. Possibly
the most useful result about semi-direct products is as follows. If G is a group with a subgroup K and a normal
subgroup H such that G = HK, then G ~ H x, K for some homomorphism ¢ : K — Aut(H). As a result, the
semi-direct product will play a central role in classifying finite groups.

Spring 2015 Problem 8. Let G be a finite group of order pg, where p and ¢ are distinct primes. Show that

(a) G has a normal subgroup distinct from 1 and G

Without loss of generality, assume p > q. Let m, denote the number of Sylow p-subgroups of G. By Sylow’s
Third Theorem, m, = 1 (mod p) and m, divides g. Since ¢ is prime, m,, is either 1 or ¢. But ¢ # 1 (mod p)
since p > ¢. Thus m, = 1. Conjugation of a subgroup H < G by g € G is again a subgroup of G of order |H|.
Thus we will obtain a Sylow p-subgroup of G when we conjugate a Sylow p-subgroup by any element g € G.
Since we have a unique Sylow p-subgroup P — G, gPg~' = P and P is normal in G.

(b) if p#£1 (mod ¢) and ¢ # 1 (mod p), then G is abelian.

Without loss of generality, assume p > ¢. By (a), the Sylow p-subgroup P < G is a normal subgroup of G.
Sylow’s Theorems imply the existence of some Sylow g-subgroup @ < G. The subgroup P n @ is a subgroup
of both P and Q. Then |P n Q| = 1 since |P| and |Q)| are relatively prime. All of this implies G = P x @ for
some group homomorphism ¢ : @ — Aut(P). We have Aut(P) ~ Z/(p — 1)Z. The generator a € @ has order
¢ so it needs to map to an element of order dividing ¢, leaving 1 or ¢. By assumption, p # 1 (mod ¢) so ¢(a)
is the identity automorphism. Thus G ~ P x @ for P,Q cyclic (which implies abelian). We conclude that G is
abelian.

Fall 2015 Problem 5.

(a) Let G be a group of order p®v with v and e positive integers, p prime, p > v, and v not a multiple of p. Show
that G has a normal Sylow p-subgroup.

By Sylow’s Third Theorem, the number of Sylow p-subgroups m,, satisfies m, = 1 (mod p) and m, divides v.
Thus m, = kp + 1 for k > 0. However, p > v and m,|v implies k£ = 0. We conclude m,, = 1. Let P be the
unique Sylow p-subgroup of G. As in Spring 2015 Problem 8, conjugation of P by an element g € G is another
Sylow p-subgroup. Thus gPg~! = P and P is a normal Sylow p-subgroup of G.



(b) Show that a nontrivial finite p-group has a nontrivial center.

Let H be a nontrivial finite p-group. Thus |H| = p* for k > 0. Act on the set H by H via conjugation. An
element is fixed by conjugation if and only if the element is in the center of H. The class equation implies

H| =|Z(H)|+ >,  |Orb(h)].
heH h¢Z(H)

We have p||H| and |Orb(h)| = [G : Stab(h)] by Orbit-Stabilizer. Thus p||Orb(h)| for each h ¢ Z(H). We
conclude that p divides |Z(G)| = |H| = Xy pgz(m) |Orb(h)|. Note |[Z(H)| > 1 since the identity of H is
contained in the center. Thus |Z(H)| = p so H has a nontrivial center.

Fall 2017 Problem 1. Let G be a finite group, p a prime number, and S a Sylow p-subgroup of G. Let
N = {ge G|lgSg~! = S}. Let X and Y be two subsets of Z(S) (the center of S) such that there is g € G' with
gXg~' =Y. Show that there exists n € N such that nzn~! = gzg~' for all z € X.

Let G act on a set X with g-2 =y for g€ G and z,y € X. We want to show that Stab(Y") = gStab(z)g~! < G.
Let h € Stab(y). Then g 'hg-2 =g th-y =g ! -y =2 s0 g thg € Stab(x). We have g~!'Stab(y)g < Stab(z).
Next let k € Stab(x). Then gkg™' -y = gk-x = g-x = y and gStab(z)g~! < Stab(y). Since conjugation by an
element of a group is an invertible operation, Stab(y) = gStab(z)g~1!.

We can define an N-action on S via conjugation. Define Stab(X) :=(,.y Stab(z) € G. Since X,Y < Z(95),
we have S < Stab(X) and S < Stab(Y"). Note that S is a Sylow p-subgroup of Stab(X) and Stab(Y"). By the result
above applied to each y € Y, we have Stab(Y) = gStab(X)g~!. Conjugation preserves the order of subgroups so
gSg~! < Stab(Y) is a Sylow p-subgroup of Stab(Y). By Sylow’s Second Theorem, the two Sylow p-subgroups S
and gSg~! are conjugate in Stab(Y"). Thus there exists an h € Stab(Y) such that h(gSg~*)h~! = S. We note that
hg € N. Additionally, (hg) -@ = h- (grg~') = grg~! since h € Stab(Y). Let n := hg € N and nan~! = grg~! for
all x € X.

Spring 2018 Problem 9. Show that there is no simple group of order 616.

As in Spring 2015 Problem 8, conjugation of a Sylow p-subgroup by an element g € G is another Sylow p-subgroup.
If there is only one Sylow p-subgroup, then the Sylow p-subgroup is normal in G.

Let G be a group with order 616 = 22-7-11. By Sylow’s Third Theorem, the number of Sylow 11-subgroups m1;
divides 56 and is congruent to 1 modulo 11. Thus we could have mi; = 1 or my; = 56. As we will show, my; = 1
implies the Sylow 11-subgroup is normal in G. Thus, assume mq; = 56. Next, the number of Sylow 7-subgroups
my divides 88 and is congruent to 1 modulo 7. We could have m; = 1,8,22,88. The argument will work for larger
choices for m; so assume my; = 8. The intersection of a Sylow 7-subgroup and Sylow 11-subgroup must be trivial
by an order consideration. Thus the Sylow subgroups chosen account for (11 + 55(10)) + (8(6)) = 609 elements.
A Sylow 2-subgroup of G will have order 8. As a result, there can be at most one Sylow 2-subgroup. Sylow’s
Theorems imply the existence of a Sylow 2-subgroup so m; = 1 for some j € {2,7,11}. By the above argument, we
conclude that G has a normal subgroup and G is not simple.

Fall 2020 Problem 1. Let p < ¢ < r be primes and G a group of order pgr. Prove that G is not simple and,
in fact, has a normal Sylow r-group.

We will first prove that G is not simple. Let n, be the number of distinct Sylow p-subgroups, n, be the number
of distinct Sylow ¢-subgroups, and n,. be the number of distinct Sylow r-subgroups. By Sylow’s Third Theorem,
we know the following

np =1 (mod p), nylgr
ng =1 (mod q), nglpr
ny =1 (mod r), n.|pq.
We conclude that n, = 1,p,q,pq. Since r > p and r > ¢, p and ¢ can’t be congruent to 1 modulo . Thus n, =1

or n, = pq. If n,. = 1, we're done so assume n,. = pq. Every Sylow r-subgroup contains the identity and r» — 1 order
r elements of G. Thus there are pg(r — 1) = pgr — pq order r elements of G. Similarly, n, = 1, p, r,pr. Since ¢ > p,



p can’t be congruent to 1 modulo ¢. If n, = 1, we’re done so assume that n, = r, the smallest other possibility. As
above, there are r(¢ — 1) = rq — r elements of order ¢ in G. We have n, = 1,¢,7, gr so assume that n, = ¢. Then
there are g(p — 1) = pg — ¢ elements of order p in G. In total this accounts for

(pgr —pg) + (rq—7)+(pg—q) +1=pgr+rq—r—q+1

elements of G. Since r and ¢ are greater than 1, rq > r + ¢ and this exceeds the order of G. Thus there is some
normal Sylow subgroup and G is not simple.

Let N be a normal Sylow subgroup of G. If |N| = r, we are done so assume |N| = ¢ without loss of generality.
Then G/N is a group of order pr, which implies that G/N has a normal subgroup of order r. By the subgroup
correspondence, there is a normal subgroup H of G containing N for which H/N is order r. Thus |H| = ¢r and
H contains a normal subgroup of order r denoted P,.. We want to prove that P, is normal in G. Let g € G. Then
lgP.g~'| = r and gP.g~! < H since H is normal in G. Since P, is a normal Sylow r-subgroup of H, P, is the
unique Sylow r-subgroup of H. We conclude that gP,g~' = P, and P, is normal in G.

Fall 2020 Problem 2. Show that groups of order 231 = (3)(7)(11) are semi-direct products and show that
there are exactly two such groups up to isomorphism.

Let G be a group of order 231 with P3 a Sylow 3-subgroup, P; a Sylow 7-subgroup, and P;; a Sylow 11-subgroup.
Since |P; n P;| = 1 for distinct ¢ and j in {3,7,11}, we conclude that |G| = |P3P;P11| and G = PsP;Pi;. By Fall
2020 Problem 1, P;; is normal in G. Let n; be the number of distinct Sylow 7-subgroups in G. Sylow’s Third
Theorem proves that ny = 1 (mod 7) and n7|33. The only option is ny = 1 and P; is normal in G. Thus the cyclic
subgroup P7Py; of order 77 is normal in G and G ~ P; Py x, P;. We have Aut(P;Pyy) ~ Z/67Z x Z/10Z and P
cyclic of order 3. Therefore, p : P3 — Aut(P;Pi1) is either trivial or sends a generator of Ps to an order 3 element
of Z/6Z. The cases of the latter produce isomorphic semi-direct products so there are only two groups of order 231
up to isomorphism.
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Definition 1. Let G be a group. A representation of G is a homomorphism p : G — GL(V) for some vector space
V over a field F. For finite groups G, we will denote by dim(p) the dimension of V' as an F-vector space.

Definition 2. Let p : G — GL(V) be a representation of a group G. A subspace W of V is G-invariant if
p(g)w € W for each g € G. An irreducible representation p : G — GL(V) is one in which there is no non-trivial,
proper G-invariant subspace of V.

Definition 3. Let G be a group and F a field. We can define the group algebra, denoted F[G], as the free vector
space over F' generated by the set G together with multiplication induced by the group law.

Example 1. Let G be cyclic of order n generated by g € G. Then every element of F[G] can be written as
Z;L;Ol a;g" where a; € F. The multiplication works as follows

n—1 . n—1 ‘
9- <Z az‘!f) = Gp-1€+ Z ai-19"

i=0 i=1
where e is the identity element of G.

A representation p : G — GL(V) gives V the structure of an F[G]-module. An F[G]-module V defines a
representation p : G — GL(V) based on the action of each g € G on V. Further, isomorphic F[G]-modules
correspond to isomorphic representations, or representations that differ by a base change. Thus the two languages
are equivalent, and we will use the F[G]-module interpretation to find some nice properties of representations. For
the qualifying exam, we will almost always take F' = C and G finite.

Since C is characteristic 0 and algebraically closed, Artin-Wedderburn theorem implies that C[G] is a semi-
simple F-algebra. More concretely, this means that

k
C[G] > [ [ Ma,(©)

where My, (C) is the algebra of d; x d; matrices over C and visa versa. Each component My, (C) defines an irreducible
representation p; of dimension d; over C. We have dim¢(C[G]) = |G| and dim¢(My, (G)) = d? so

k
Gl = > d;.
i=1

In other words, the sum of squares of the dimensions of irreducible representations of G equals the order of G.

The center of the group algebra, Z(C[G]), is all elements « € C[G] that commute with each basis element
g€ CIG]. If a =} ;ay9, we can show that a € Z(C[G]) if and only if a; = a, whenever g and g’ are in
the same conjugacy class. Let Cy,...,Cy be distinct conjugacy classes of G. Then {uy,...,ux} is a basis for
Z(C[G]) where u; = 3, g We conclude that dim(Z(C[G])) = #(conjugacy classes of G). On the other hand,
Z(Mg4,(C)) = C- Iy, is one-dimensional so the number of irreducible representations of G over C is equal to the
number of conjugacy classes of G.

Example 2. Let G be a finite group. Two representations p : G — GL,(C) and p : G — GL,,(C) are isomorphic
if and only if p(g) = Pu(g)P~! for P € GL,(C). Let p: G — GL{(C) and p : G — GL;(C) be one-dimensional
representations. Then GL(C) ~ C* and p is isomorphic to p if and only if p = p.



Example 3. Let A be a finite abelian group of order n. Then A has n distinct conjugacy classes, which implies n
non-isomorphic irreducible representations. The dimensions d; of the irreducible representations satisfy n = > | d?
sod; =1foreach1<i<n.

Example 4. Let G be a finite group and p : G — GL;(C) a one-dimensional irreducible representation. Then
GL;(C) ~ C* is abelian so p factors through G/[G, G]. We conclude that the number of one-dimensional irreducible
representations of G is equal to the order of G/[G, G].

Definition 4. Let p: G — GL(V') be a representation. The character of p is defined as x,(g) = tr(p(g)).
Example 5. Let p: G — GL(V) and p : G — GL(W) be representations of a group G.

(1) 1t dim(p) = 1, then x,(g) = pl(g).

(2) If p >~ p, then x,(9) = xu(g) for all g€ G.

(

(

)
)
3) Xpau(9) = xp(9) + xpu(g) for all g€ G.
1) x,(hgh=1) = x,(g) for all g, h e G.
(5) For e € G the identity, x,(e) = dim(p).

Definition 5. Let Ch(G) be the vector space of functions G — F which are constant on conjugacy classes. Note
that the characters of a group G are elements of this vector space. We can define a bilinear form on Ch(G):

B vaX,u Z X,n _1 Xu )
gEG

The characters y; corresponding to the irreducible representations p; form an orthonormal basis for Ch(G) with
respect to B.

Theorem. Let pq, ..., pr be the irreducible representations of a finite group G over C with corresponding characters
X155 Xk-

(1) Every finite-dimensional representation p is isomorphic to (—szl pf(x” i),
(2) Two representations p and y are isomorphic if and only if x, = x,.

(3) A representation p is irreducible if and only if B(x,, x,) = 1.

Example 6. Let pq,...,pxr be the irreducible representations of a finite group G with corresponding characters
X1s---5 Xk Let Cp,...,Cg be the conjugacy classes of G. Then

k
Z ng)_O

for g;, € Cj, and ji # jo.

Example 7. The regular representation of G is given by acting on the vector space F[G] by left multiplication. The
representation will be p : G — GL,, (F) where n = |G|. Each element p(g) is a permutation matrix. Let {g1,...,gn}
be the group eleemnts of G which form a basis for F[G] as an F-vector space. If g is not the identity, then it
fixes no elements of the basis and x,(g) = tr(p(g)) = 0. Let the irreducible representations of G be p1, ..., pr with
characters x1,...,Xxr. We find that the regular representation breaks down as p = @Ll p?f‘ and x, = Zle diXi-
The regular representation can be helpful in coming up with higher dimensional representations for a group since
each irreducible representation is a direct summand.

Most of the qual problems on representation theory will ask us to find the character table of a given group G.
The character table for a group G is constructed as follows. Each row will represent the character of an irreducible
representation, which we will denote x1, ..., xx. Each column will represent a conjugacy class of G, which we will
denote Cq,...,C). By above, the table will have the same number of rows and columns. The ith row, jth column
entry of the table will be x;(g;) for g; € C;.

A typical approach to one of these problems includes the following steps.



(1) Find the conjugacy classes of G. The number of conjugacy classes is the number of irreducible representations.

(2) The order of G/[G, G] is the number of one-dimensional irreducible representations.

(3) Let d; denote the dimension of the irreducible representation p; with character x;. The equation |G| = Z§=1 d?
along with the number of one-dimensional irreducible representations can sometimes help us determine the
dimensions of other irreducible representations.

(4) The column corresponding to the conjugacy class of the identity will be populated with the dimensions of each
irreducible representation.

(5) The trivial one-dimensional representation p(g) = 1 will provide a row of all 1s.

e rows satisfy an orthogonality condition > . |C;|x4,(9:)x4.(g:;) = 0 for j; # jo and some representative
6) Th tisf th lity condition 3%, |Ci|x, ()X 0 f d tat
k
gi € C;. Further > | |Cy||x;(gi)]* = n.

(7) The columns satisfy an orthogonality condition }},_; xi(g;,)xi(9;j,) = 0 for j1 # jo and g;, € Cj,.



Fall 2015 Problem 7, Spring 2016 Problem 8. Show the symmetric group S4 has exactly two isomorphism
classes of irreducible complex representations of dimension 3. Compute the characters of these two representations.
Find the full character table.

We will first show that the abelianization S4/[Sy, S4] has order 2. The commutator subgroup [Sy, S4] is generated
by elements ghg~*h~! € S;. Each ghg~'h~! is an even permutation so [S4, S4] = A4. The nonidentity elements of
Ay are of the form (ij)(kf) or (ijk) for 1 < i,5,k,¢ < 4. Without loss of generality, we will show (123), (14)(23) €
[S4,S4]. Notice (23)(12)(23)(12) = (123) € [54,54] and (123)(234)(132)(243) = (14)(23) € [S4,S4] as desired.
Thus [54,54] = A4 and |S4/[S4,S4]| = 2.

Each one-dimensional representation of Sy is a group homomorphism p : Sy — C*. Since C* is an abelian
group, p factors uniquely through the abelian group S4/[S4, S4]. If two one-dimensional representations are equal on
S4/[S4, S4], then they are equal as homomorphisms from Sy. Thus the number of one-dimensional representations
of S4/[S4,54] is equal to the number of one-dimensional representations of Ss. By above, S4/[S4, S4] has two
conjugacy classes so it has two one-dimensional irreducible representations. We conclude that Sy should have two
one-dimensional representations. (This works for one-dimensional irreducible representations of any group.)

Now the trivial representation and the sign representation, sgn : Sy — C*, are the two one-dimensional
representations of S4. The conjugacy classes of Sy are based on cycle type of which there are five. Since |S4| = 24,
we have 24 = 1 + 1 + a? 4+ b% + 2 for a,b,c € N representing the dimensions of the three other irreducible
representations. If we take ¢ > 4, we are left with a® + > = 6, which cannot occur. Thus 1 < a,b,c < 3. We
cannot have a = b = ¢ = 2 so, without loss of generality, take ¢ = 3. Then we need 13 = a? + b? so the only option
is a = 2 and b = 3. Thus 54 has two 3-dimensional irreducible representations.

We will now realize the two irreducible representations of dimension 3. Define the vector space

V= {(vi)eR4:Z4:vi—O}.

i=1
Then V has a left S, action via o(v;) = (vg(;)) for o € Sy and {(-1,1,0,0),(-1,0,1,0),(—1,0,0,1)} is a basis
for V. The action described gives an irreducible representation for Sy since (23)(—1,1,0,0) = (—1,0,1,0) and
(24)(-1,1,0,0) = (—1,0,0,1). In other words, there is no Ss-invariant subspace of V. Let p : Sy — M3(C) denote

this 3-dimensional irreducible representation.

e | (12) | (123) | (12)(34) | (1234)
Xogn | 1| -1 1 1 1
X, | 3] 1 0 1 1

Now p® sgn is an irreducible representation of Sy x Ss. Include Sy along the diagonal of Sy x Sy to make p ® sgn
a representation of S4. The character X, gsen(9) = X,(9)Xsen(g) gives the following row of the character table.

| e | (12) | (123) | (12)(34) | (1234)
Xp®sgn‘3‘ -1 ‘ 0 ‘ -1 ‘ 1

We have an inner product on the space of class functions such as (x,, x») = ﬁ g Xu(9)xw (g™ 1). We know that
X p@sgns Xp@sgny = 1 if and only if p ® sgn is an irreducible representation. We note that the number of elements
in each conjugacy class are 1,6,8,3, 6 respectively. Since ¢~' and g are in the same conjugacy class for all g € S;,

Otposams Xoman) = 57 (19) + 6(1) +8(0) + 3(1) + 6(1)) = 1.

Thus p ® sgn is the other irreducible representation of Sy.
The only remaining row of the character table corresponds to the 2-dimensional irreducible representation which
we denote p : Sy — M5(C). We will use column orthogonality to complete the table below.

e | (12) | (123) | (12)(34) | (1234)
Xtrivial 1 1 1 1 1
Xegn | 1| =1 | 1 1 -1
X |2 —1 2 0
X, |3 1 0 1 —1
Xpsem | 3| —1 | 0 ] 1




Fall 2016 Problem 4. Let D be a dihedral group of order 2p with normal cyclic subgroup C of order p for an
odd prime p. Find the number of n-dimensional irreducible representations of D (up to isomorphisms) over C for
each n, and justify your answer.

Let D :=(r,s: 1P = 5% = ¢,rs = sr 1) be the dihedral group of order 2p. We will find the commutator subgroup

[D, D] € D. Any element of the commutator subgroup is of the form (r’s)(r7s)(r’s)~1(r7s)~! for some 0 < 4,5 <
1 p+1l p+1 2p+2

p — 1. Reducing this, we end up with r2=2/. Further, PP B sl = Pt ss = p B =1 e [D, D].
Thus [D, D] is the subgroup of D generated by r and |D/[D, D]| = 2. There are two non-isomorphic classes of
one-dimensional representations of D.

We now classify the conjugacy classes of D,. Note that it is sufficient to conjugate each element only by the
generators © and s. The identity makes up one conjugacy class. When we conjugate s we notice risrP=% = r2is,
Since p is odd, we can continue this process to obtain the conjugacy class {s,rs,...,7?"ts}. When we conjugate
r? we have sris~! = sris = rP~% for 1 <i < p— 1. Conjugating by s again yields sr?~*s~! = srP~%s = r’. Thus we
have the conjugacy classes {ri,7P~%} for 1 <i < pT_l. In total, this is L-;—S conjugacy classes.

Using the intuition of D as permutations of vertices of a regular p-gon, we can construct the classes of 2-
dimensional irreducible representations. Define the rotation by 2%’“ counterclockwise in the plane,

cos(2mwk/p) —sin(2wk/p)
ox(r) = <sin(27rk/ )
p)  cos(2mk/p)

and the reflection about the z-axis in the plane,

Pr(s) = (3) _01>
1.

for 1 < k < B5=. Each ¢ is an irreducible representation of D since there are no subspaces of C? invariant
under these transformations. Further, these are non-isomorphic irreducible representations since the characters
X4, (1) = 2cos(2mk/p) differ for each k.

The sum of the squares of the dimensions of these representations is 1 + 1 + (p—;l) 22 =2+ (2p —2) = 2p,
the order of the group. Thus these are all isomorphism classes of irreducible representations of D over C. We
conclude that there are two one-dimensional and % two-dimensional isomorphism classes of irreducible complex
representations of D.

Spring 2017 Problem 2. Let G be the group with presentation (z,y : z* = 1,y = 1, zyz~! = y?), which has
order 20. Find the character table of G.

We will first find the conjugacy classes of G. Note that we only need to check conjugation by the generators x
and y. Since zy = y%x, we can write each element of G as y’27 for some 0 < i < 5 and 0 < j < 4. Additionally,

(yixj)(ykze)(yixj)q _ yi+2jk$j+£x7jy7i _ yi+2jkx6y7i _ y7i+2-7kx€

so the exponent of 2 remains unchanged by conjugation. By the formula above, conjugating y*z* by y will result
in y*~1z¢. Thus the conjugacy classes are

(1}, {y,v%, ¥, v* Ha, yz, v?2, ym, o), {2, ya?, y?2?, 32, yta?), (28, yad, yPa®, P2, yta®),

which implies 5 isomorphism classes of irreducible representations. We will now find the commutator subgroup
[G, G]. The generators of [G, G] have the form (y'2’)(y*z)(y'a?) "  (yFa?) =t = (y~ T2 *al)a=ly=F = y=+ @ -1k,
We can pick i =4, j =0, k =0, and ¢ = 1, which implies [G, G] is the cyclic subgroup of G generated by y. Then
the number of isomorphism classes of one-dimensional representations is |G/[G,G]| = 4 by the argument in Fall
2015 Problem 7. There are 4 one-dimensional representations and 5 conjugacy classes. Since the order of G is the
sum of the squares of the dimensions of the irreducible representations, 20 = 12 + 12 + 12 + 12 + k2 so k = 4.

We will now determine the 4 one-dimensional representations. Since z is order 4, it must map to +1,+4 in C*.
Similarly, y is order 5 so y must map to a fifth root of unity in C*. The character is equal to the representation
in the one-dimensional case so the representation is the same on each conjugacy class. Let p; : G — C* be one-
dimensional representations for 1 < ¢ < 3 and g : G — GL4(C) be the 4-dimensional irreducible representation.



For p; : G — C*, pi(y) = pi(y?) = pi(y)? so pi(y) = 1. We can fill in the character table below based on the image
of z. The last row of the table is found by column orthogonality.

1] vy T 22 | 23
Xtrivial 1 1 1 1 1
Xp1 1 1 1 -1 | —2
Xps 1 1 -1 1 -1
Xps 1 1 —1 | —1 1
Xu 41 —-110 0 0

Spring 2018 Problem 6. Let G be a group with a normal subgroup N = (y, 2) isomorphic to (Z/2Z)?. Suppose
that G has a subgroup @ = {(x) isomorphic to the cyclic group Z/37Z such that the composition Q ¢ G — G/N is
an isomorphism. Finally, suppose that xyz~' = z and zzx~! = yz. Compute the character table of G.

We will find the conjugacy classes of G. Since xy = zx and xz = yzx, we can write every element of G as
y'27x® for 0 < 4,5 < 1 and 0 < i < 2. The relations allow reduction to the form y*z7z* without changing the
exponent. As a result, conjugation by any element will preserve the x exponent of any element. We will show that
the conjugacy classes are based on the exponent of z. The relations of G produce the conjugacy class {y, z,yz}. In
the equations below, we start with z.

yoy ! = yry = 2u
y(ea)y™
-1

2(zx)27" = x2z = yzx

= y2te = yx

A similar argument starting with 22 gives the conjugacy class breakdown below.

{6}7 {y’ Z? yz}7 {‘I7 y‘r7 Zx? yzaj}’ {x27 yl’z’ Z'TZ’ yzxz}

Note that |G| = 12. Thus the sum of 1 and three squares needs to be |G| = 12. We cannot have an irreducible
representations of dimension higher than three. The only option is 12 = 12 + 12 + 12 + 32 so there should be three
isomorphism classes of one-dimensional representations and one isomorphism class of 3-dimensional irreducible
representations.

We will first classify the characters of the one-dimensional irreducible representations. Let p; : G — C* for
1 < i < 3 be the one-dimensional representations. Since y and z are order 2 elements of GG, they must map to
+1 in C*. Similarly, x will be sent to a third root of unity. The group C* is abelian so p(z) = p(zyx~!) =
p(x)p(y)p(x)~t = p(y) and p(yz) = p(zzz~?') = p(z)p(2)p(x)~t = p(z). Let £ be a primitive third root of unity.
We find the final row of the character table by column orthogonality and the identity 2?21 & =0.

2

1] vy T

Xtrivial 1 1 1 1
Xp1 1 1 4 52
Xp2 1 1 52 §
X 31 -110 0

Fall 2018 Problem 11. Let GG be a finite group, w be a primitive 3rd root of 1 in C and suppose that the
complex character table of G contains the row

1 w w? 1

Determine the whole complex character table of G, the order of the group and the order of its conjugacy classes.

Note that the number of columns, four, determines the number of conjugacy classes of G and the number of
isomorphism classes of irreducible representations. The first row of the character table corresponds to the trivial
representation. Let p : G — C be the one-dimensional representation described in the row given. Then we can
construct a one-dimensional representation p® p : G x G - C®c¢ C ~ C. By including G in G x G via the
diagonal homomorphism, we find p ® p describes a one-dimensional representation with x,g,(9) = x,(g)?. Since



the characters x,g, differ from the current rows, p ® p describes a distinct isomorphism class of one-dimensional
representations.

By orthogonality of the second/third column and the first column, we find the zeros in the fourth row. Let
a := xu(e) and b := x,(g) for g € Cy. Then ab = —3 by the orthogonality of columns one and four. Since a
represents the dimension of the irreducible representation y : G — M,(C), a > 0 is an integer so b € Q. With |G|
finite, the trace of u(g) is the sum of eigenvalues that are all roots of unity. Thus b € Q is an algebraic integer so
be Z. We conclude that a =1 and b= —3 or a = 3 and b = —1. If @ = 1, then |G| = 4. The order of some g € Cy
must be divisible by 3 since p(g%) = p(g9)® = 1. This contradicts the order of G so a # 1. Thus a = 3 and b = —1.

As a result, |G| = 12 + 12 + 12 + 32 = 12. The rows are orthonormal under the inner product {(v,w) =
9+|Cal
12

and |Cy| = 3. The inner product of rows two and one gives
1+|Colw’+[Cslwt3 g

‘—Cl;' Z?Zl |Cilv;w;. Row three implies 1 =

2
0 = LHCelwt|Calw +3 Similarly, the inner product of rows three and one gives 0 =

2
|C3] = |C5] with 8 elements between the two conjugacy classes. We conclude |Cs| = |C3| = 4.

Cl = {6} CQ 03 C4

Xtrivial 1 1 1 1
Xp 1 w W] 1

X p®p 1 w? | w 1
Xpu 3 0] 0 [-1

Fall 2019 Problem 7. Let G be the group of order 12 with presentation
G={g;h:g"=1h"=1,ghg™" = h?).

Find the conjugacy classes of G and the values of the characters of the irreducible complex representations of G of
dimension greater than 1 on representatives of these classes.

The final relation of G implies that gh = h?g and gh®? = hg. We can use these relations to write every element
of G as ¢g'h? for 0 < i < 3 and 0 < j < 2. Further, we have the relations h%2g® = g3h and hg® = ¢g3h? by inverting
the above relations. Clearly, C = {e} is a conjugacy class. The relations

ghg™' = ghg® = h?
gh2971 _ gh293 =}

show that Co = {h, h?} is a conjugacy class. We find

hgh™' = hgh? = gh
h(gh)h™! = gh?
g(gh)g™" = g°hg® = gh?
h(gh®>)h™' = hgh = g
(gh”)g~

g(gh*)g~" = g°h*g® = gh

so C3 = {g,gh,gh?} is a conjugacy class. By similar computation, we have conjugacy class Cy = {g3, g>h, g3h?}.
The equations
hQQh—l _ h92h2 _ gh29h2 _ 92

hg*h)h™! = hg® = gh®g = ¢*h
g—l — g3hg3 — thQ
h™' = hg*h = gh’gh = ¢*h*

9(g°h*)g~" = ¢°h%¢®> = g*h
prove that C5 = {g?} and Cs = {g°h, g?h?} are conjugacy classes. All elements of G' have been placed in conjugacy
classes.

The commutator [G,G] has elements of the form ghg='h™! = ghg®h? = h. Thus (h) < [G,G]. We see that
G/{h) is cyclic of order 4 and, thus, abelian. We conclude [G, G] = (h) and there are |G/[G, G]| = 4 one-dimensional



non-isomorphic irreducible representations of G. Each one-dimensional p; : G — C* sends h to 1. The image of
g must be a fourth root of unity. Further, 12 = 4 4+ a2 + b2 for a and b the dimensions of the other irreducible
representations of G. We see that a < 3 and b < 3 so a = b = 2 so we obtain the following character table.

e|lh| g | g ] g |g*n
vi|1[1[ 11 [1]1
e | L1 @ | 1| =] -1
s |11 -1] 1 [-1] 1
xa | L1 =i | =1 i | -1
X5 | 2
X6 | 2

We will construct a two-dimensional irreducible representation of G over C. Define a set map p on the generators

so i : G — GLy(G) is a group homomorphism as desired. There is no non-trivial, proper G-invariant subspace of
C? which proves y is irreducible. Compute the characters ys by taking the traces of the relevant matrices. We can
complete the final row of the character table by column orthogonality of column j with column 1.

el h | g lg| g |g*n
vili| T |1 [ 1]1]1
o 1] 1 | i | 1] =] =1
s 1| 1 [=1] 1] -1] 1
ya 1] 1 | —i| 1] i | -1
s 2] 1] 0 |20 1
Yo |2/ -1] 0] 2 [0 -1
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Definition 1. A category C consists of a collection of objects Ob(C), a collection of morphisms between objects
Home (X,Y), and a composition operation o on morphisms such that

(i) ho(gof) =(hog)of

(ii) for each object X of C there is a unique morphism id y that satisfies f = foidx and g = idx og for morphisms
into or out of X.

Definition 2. A small category is one in which the objects and morphisms form a set. A locally small category
C is one in which Hom¢ (X, Y) is a set for any two objects X and Y. Note that the collection of all morphisms in
the category might be too large to form a set.

Example 1. The most useful examples of categories for the qual are:
1. The category of sets (Sets)
2. The category of groups (Grps) with the full subcategory of abelian groups (Ab)
3. The category of rings (Rings) with the full subcategory of commutative rings (CRings)
4. The category of R-modules over a ring R (R-Mod)

For each term we define, we want to know the technical construction in each of the above categories. Once we’re
familiar with each category, we will hopefully be able to come up with simple counterexamples to qual problems.
Definition 3. Let X; and X5 be objects of a category C. The product X; x X5 is equipped with morphisms
m X1 x Xo — X and 75 : X7 X X9 — X5 and satisfies the following universal property. Given an object Y and
two morphisms f1 : Y — X and f> : Y — Xj, there is a unique morphism f :Y — X; x X5 such that f; =m0 f
and fo =m0 f.

f2

X1><X2L>X2

|

X1

We can extend this definition to a product on infinitely many objects of C which will be denoted [ [, X;. Dual
to the notion of a product is the coproduct.

Definition 4. Let X; and X5, be objects of a category C. The coproduct X1 ][ X2 is equipped with morphisms
11 : X7 — X1 x Xo and 19 : Xo — X7 x Xo and satisfies the following universal property. Given an object Y and
two morphisms f; : X1 —> Y and fo : Xo — Y, there is a unique morphism f: X; [[ X2 — Y such that f; = foy
and f2 = f O Lg.




We can likewise extend the definition of coproducts to infinite families of objects.
Example 2. 1. In Sets, the product is the cartesian product and the coproduct is disjoint union.

2. In Grps, the product is the direct product and the coproduct is the free product. In Ab, the product is direct
product while the coproduct is direct sum. For finite families, the product and coproduct coincide in Ab.

3. In Rings, the product is direct product and the coproduct is similar to the free product on groups. In CRings,
the product is direct product and finite coproducts are given by tensoring over Z.

4. Finite products and coproducts are isomorphic and given by the direct sum in R-Mod.

Via the universal properties of products and coproducts, we can construct the following bijections

Home (X,HY;) ~ | [Home (X, Y7)
Home (]_[ Xi,Y> ~ HHomc(XZ—7Y).

Spring 2015 Problem 1. What are the coproducts in the category of groups?

We will define the free product of a family of groups Gicr. As a set, %,ec;G; is all words on the letters | J;.; Gi.
We reduce letters from the same group via the group multiplication. Define the group operation as concatenation.
The identity element is the empty word, concatenation is associative, and the inverse of a reduced word ¢; - - - g, is
gt -gfl. Thus the free product of a family of groups is a group.

Define the inclusion homomorphisms i; : G; — 3kperGr as i;(g) = g. We want to show that kG, satisfies
the universal property of the coproduct. Let f; : G; — A be a family of group homomorphisms. For the diagram
below to commute, h : %¥erGr — A must be defined as h(g) = f;(g) for g € G;. Then we extend h to a group
homomorphism. For a reduced word gi - - gn € *¥kerGr, we have h(g1---gn) = h(g1) - h(gn) = f5.(91) - f(gn)
for g; € G;,. Since h is uniquely determined by the {f;};cr, the free product is the coproduct in the category of
groups.

lzj 2

ijl
Gj, —— *kerGi

Fall 2018 Problem 8. Give an example of a diagram of commutative rings whose colimit in the category of
commutative rings is different from its colimit in the larger category of rings (and ring homomorphisms).

We will show that the coproduct of two commutative rings is the tensor product over Z. Let A, B,C be
commutative rings with ring homomorphisms f: A — C and g : B — C. We need h(ia(a)) = h(a®1) = f(a) and
h(ip(b)) = h(1®Db) = g(b) for a € A and b € B. Extend h to a commutative ring morphism so h(a ® b) = f(a)g(b)
for a®b e A®y B. Thus h is the unique commutative ring morphism that causes the diagram to commute.

We will now show that the tensor product over Z is not the coproduct in the category of rings. Let A = B =
C = M>(Q) and take f = g = idps, (). Then h : M3(Q) ®z M2(Q) — M2(Q) can be defined as h(a ® b) = ab or
h(a ®b) = ba. These two ring morphisms are not equal since M>(Q) is not commutative. Thus M>(Q) ®z M2(Q)
does not satisfy the universal property of the coproduct.



Definition 5. A covariant functor F : C — D for categories C and D is a collection of functions Ob(C) — Ob(D)
and Home(X,Y) — Homp (F(X), F(Y)) such that

(i) F(idx) = idpx)
(ii) F(go f) = F(g) o F(f).
A contravariant functor satisfies F(go f) = F(f) o F(g).

Definition 6. Let F' and G be functors C to D. A natural transformation o : F' — G is a collection of morphisms
ax : F(X) — G(X) such that for f: X — Y in C, the following diagram commutes.

F(X) 2% G(X)

|ro Jew

FY) 25 G(Y)

Natural transformations are mappings between functors that preserve the structure of the underlying categories.
If we look at the category of functors between C and D, the morphisms would be natural transformations. A natural
isomorphism « : F — G would be an isomorphism on each object X of C.

Example 3. Let X be an object of a locally small category C. Define the functor RX : C — Sets as
RX(Y) = Home(X,Y)
RX(f)(g9)="fog
for f: Y — Z and g € Home(X,Y). A functor F is represented by X if F is naturally isomorphic to R¥.

Lemma 1 (Yoneda). Let C be a locally small category and fix an object X of C. Let F': C — Sets be a functor.
There is a bijection ¢ : Nat(R¥X, F) — F(X) given by ¢(a) = a(idx).

Yoneda Lemma is possibly the most important result in this section. It tells us that instead of studying
locally small categories, it might be helpful to embed them into the category of functors into Sets. We have some
understanding of the category of Sets that might provide intution about the category C. As a corollary to Yoneda
Lemma, we obtain an isomorphism

Nat(RX, RY) ~ Hom(Y, X).

There is a deep relationship between functors represented by X and the object X. One way in which we will use
Yoneda Lemma is the situation where Home (A, B) ~ Home(C, B) for all objects B. Yoneda Lemma tells us that
C~ A

Definition 7. Let F': C — D and G : D — C be two functors. We say that F' and G form an adjunction pair with
F a left adjoint to G and G a right adjoint to F if

Homp (F(X),Y) ~ Hom¢ (X, G(Y))

for all X € Ob(C) and Y € Ob(D) such that the family of bijections is natural in X and Y.
Alternatively, F' and G form an adjunction pair with F a left adjoint to G and G a right adjoint to F if there
are natural transformations € : FG — 1¢ and 7 : 1p — GF such that

F rgr £, F

¢ %, GFG -5 ¢
are the identity transformations on F' and G respectively. We call € the counit and 7 the unit.

Spring 2015 Problem 2. Let C be the category of groups and C’ be its full subcategory with objects the
abelian groups. Let F' : C’ — C be the inclusion functor. Determine the left adjoint of F' and show that F' has no
right adjoint.



Let f : G — H be a group homomorphism where H is abelian. The commutator subgroup [G, G] is generated the
subgroup generated by {g19297 195" € G g1,92 € G}. For g1, g2 € G, we have (91[G, G])(92[G, G]) = g192[G,G] =
9192(95 91 '9291)[G, G] = 9201[G, G| = (92[G, G])(91[G, G]). Thus G/[G,G] is an abelian group. Note f(g192) =
flg1)f(g2) = f(g2)f(g1) = f(g2g91) and f([G,G]) = 0. Since [G,G] < ker(f), there is a unique abelian group
homomorphism h : G/[G,G] — H such that ph = f for projection p: G — G/[G, G].

We will define the functor L : C — C" as L(G) := G/[G,G] for [G, G] the commutator subgroup. Note that a
morphism of groups f : G — H gives a unique morphism f : G — H/[H, H] by composing with the projection.
Since H/[H, H] is an abelian group, the above argument implies f factors uniquely through G/[G,G] as f = pg for
p: G — [G,G] the projection. Note that g(a[G,G]) = f(a)[H, H] for a € G. Define L(f) :=g. Let 15 : G —> G
be the identity group homomorphism. Then 15 : G — G/[G, G] factors uniquely as the identity on G/[G,G]. We
have L(lg) = 1(g). Now let f : G — H and g : H — I be two group homomorphisms. Then gf : G — I gives
L(gf) = h for h : G/[G,G] — I/[I,I] an abelian group homomorphism defined as h(a[G,G]) = (9(f(a))[I, I].
Now L(f) : G/|IG,G] — H/[H,H] gives L(f)(a[G,G]) = f(a)[H,H] and L(g) : H/[H,H] — I/[I,I] gives
L(g)(f(a)[H, H]) = g(f(a))[I,I]. Thus L(gf) = L(g)L(f) and L is a covariant functor.

We want to show that Home (A, F(B)) and Home: (L(A), B) are in bijective correspondence for A € Ob(C) and
B € Ob(C’) and the bijection is functorial in A and B. As we have seen, some f € Hom¢ (A, F(B)) factors uniquely
through L(A) = A/[A, A] since B is an abelian group. Define the natural isomorphism ® whereby ® 4 g(f) is this
unique morphism. Thus Hom¢ (A, F(B)) ~ Home: (L(A), B) via ®4 5. Let g : A’ — A be a morphism of groups.
Then we want to show the diagram below commutes. Note that g([A’, A']) < [A, A] = ker(A — A/[A, A]) so L(g)
factors uniquely through A’/[A’, A’]. We note that L(g) : A'/[A’, A'] — A/[A, A] is this unique morphism. Then
DA p(f)oL(g): A//[A', A'] - B descends from fog: A’ — A — B. By construction, ® 4/ g(f o g) descends from
f og. The uniqueness of these morphisms implies ® 4 5(f) 0 L(g) = @4 5(f © g) and we are functorial in A. A
similar argument shows the bijection is functorial in B. We conclude that L is a left adjoint to F.

Home (A, F(B)) 22, Home (L(A), B)

J*Og l—oL(g)

Home (4, F(B)) 2% Home: (L(A'), B)

We will show that F' does not have a right adjoint. We will first prove that a left adjoint functor F' preserves
coproducts. Let G be the right adjoint. Let A; be objects of C and B an object of D. Then

Home (F (]_[ AZ-) ,B) ~ Homp (]_[ AZ-,B>

~ HHomD(Ai,G(B))

~ HHomC(F(Ai), B)

~ Home (H F(Ai),B> .

By Yoneda Lemma, F' (] [, A;) ~ [ [, F'(A;). The coproduct in the category of groups is the free product while the
coproduct in the category of abelian groups is the direct sum. The free product Z * Z is not isomorphic to Z @ Z
so F' does not have a right adjoint.

Fall 2017 Problem 10. Let C be a category with finite products, and let C? be the category of pairs of objects
of C together with morphisms (A4, A’) — (B, B’) of pairs consisting of pairs (A — B, A’ — B’) of morphisms in C.
Let F : C? — C be the direct product functor (that takes pairs of objects and morphisms to their products).

(a) Find a left adjoint to F.

Let C,D € Ob(C) and f € Hom¢(C, D). Define L : C — C? as L(C) := (C,C) and L(f) : L(C) — L(D)

as (f,f). Then L(lc) = (1¢,1c) = lp(c). Additionally, L(gf) = (g9f,9f) = (9,9) o (f,f) = L(g)L(f) for a
morphism g € Home (D, E) and E € Ob(C). Thus L is a functor.

By the universal property of the direct product, there is a unique morphism h : C' — A[[ B for each pair of
morphisms (f,g) : (C,C) — (A, B) such that m4 o h = f and 7 o h = g. Define a natural transformation



® : Homez(L(—), —) — Homez(—, F'(—)) so that ®¢ (4 ) : Home(L(C), (A, B)) — Homez(C, F(A, B)) gives
Qe (a,B)(f,9) := h. Let k € Home(C', C) for C" € Ob(C). We want to show the following diagram commutes.

®c,(a,B)

Home (L(C), (A, B)) 2“2 Home: (C, F(A, B))

J{( ok,—ok) J{—ok

Home (L(C"), (A, B)) <““F'Home: (C", F(A, B))

Let (f,9) € Home(L(C), (A, B)) = Home((C,C), (A, B)). We have ®¢ (4 p)(f,9) o k is a morphism from
C'" to A][B for which 74 o (®c,(a,8)(f,9) 0 k) = fok and mp o (®c (a,)(f,9) © k) = gok. Further,
h := ®cr (a,p)(f o k,gok) is the unique morphism C’ — AJ[ B that commutes with f o k and g o k under

projection morphisms.
gok

o AIIB —= B

2

Thus the universal property of the direct product implies ®¢ (4, 5)(f,9) 0k = ®cr (a,B)(f o k,g o k) and the
desired diagram commutes. By a similar argument, we obtain naturality in (A, B). We conclude that L is a
left adjoint to F'.

(b) For C the category of abelian groups, determine whether or not F' has a right adjoint.

Since abelian groups is an abelian category, finite products and coproducts are isomorphic. Define R : C — C?
as R(C) := (C,C) and R(f) := (f, f) for f € Hom¢(C, D). Then R(1¢) = (1¢,1c) = 1g(c). Additionally,
R(gf) = (gf,9f) = (g,9) o (f, ) = R(g)R(f) for a morphism g € Hom¢(D, E) and E € Ob(C). Thus R is a
functor.

By the universal property of the coproduct, there is a unique morphism h : A[[ B — C for each pair (f,g) :
(A,B) — (C,C) such that hoig = f and hoip = g. Define the natural transformation ® : Homez (—, R(—)) —
Home (F/(—),—) as ®(a,py,c(f,9) := h. As in (a), the universal property of the coproduct implies naturality in
(A, B) and C. We conclude that R is a right adjoint to F.

Fall 2016 Problem 8. Prove that if a functor F': C — Sets has a left adjoint functor, then F' is representable.

Let L : Sets — C be the left adjoint to F. Then we know that ®4 g : Home¢(L(A), B) ~ Homges(A, F'(B)) for
some natural isomorphism ® and A € Ob(Sets) and B € Ob(C). Let A := {«} be a set with one element. Then
Homgets(A, F(B)) ~ F(B) as sets via the morphism hp : Homges(4, F(B)) — F(B) with hg(a) := a(x). Thus
Home(L(A), B) ~ Homgets(A, F(B)) ~ F(B) for all B € Ob(C).

Define a natural transformation g : Home(L(A), B) — F(B) by ng(f) := ®a.5(f)(x). Since @4 p is an
isomorphism and Homgets(A, F(B)) ~ F(B) by choosing the image of * € A, we conclude that 7z is an isomorphism
for each B € Ob(C). Let f € Hom¢(L(A), B), and let g : B — C be a morphism in C for C' € Ob(C). We want to show
the diagram below commutes. Since ® is a natural transformation, the square on the left commutes. The square on
the right commutes since F(g)(hg(a)) = F(g)(a(*)) and he(F(g) o ) = (F(g) o a)(x) for o € Homgeys (A, F(B)).
Therefore, the diagram commutes. We conclude that F is represented by L(A) € Ob(C).

B

Home (L(A), B) —2% Homges(A, F(B)) —2~ F(B)

lgof lF(g)O— F(g)

Home(L(A),C) 2ac, Homsgets (A, F'(C)) —— F(C)

w
)



Definition 8. An initial object of a category C is an object I such that, for every object X of C, there exists one
and only one morphism I — X. A terminal object of a category C is an object T such that, for every object X of
C, there is one and only one morphims X — T.

Spring 2016 Problem 2. Consider the functor F' from commutative rings to abelian groups that takes a
commutative ring R to the group R* of invertible elements. Does F' have a left adjoint? Does F' have a right
adjoint? Justify your answers.

We will show that F has a left adjoint. Define the functor L : Ab — CRing as L(A) = Z[A], the group ring
over Z. For an abelian group morphism f : X — Y, we define L(f) : Z[X] — Z[Y] as L(f)(z) = f(z) and extend
Z-linearly. Note that L(f) is well-defined since x € X is a unit in Z[X] and it maps to a unit in Z[Y]. Additionally,
L(f) is a unique commutative ring morphism that agrees with f on X since Z is initial in CRings. Let 1x : X —» X
be the identity morphism. Then L(1x)(X, cx @2%) = X cx @z and L(1x) = 1p(x) for a, € Z. Let f: X — Y and
g :Y — Z be two abelian group morphisms. Then L(gf)(2,cx @a®) = Dex 29(f(2)) = L(9) Xpex taf(2)) =
L(g)(L(f)(Xsex az)) for ay € Z. Thus L(gf) = L(g)L(f) and L is a functor.

We want to show that L is a left adjoint to F. Let f : A — F(B) be an abelian group morphism for
A € Ob(Ab) and B € Ob(CRing). Define a natural transformation ® 4 g : Homay, (A, F(B)) — HomcRring (L(A), B)
by ®45(f)(x) = f(x) and extend Z-linearly. By above, this is well-defined and the unique commutative ring
morphism that agrees with f on X. Since units must map to units in a commutative ring morphism, every
h € Homcring (L(A), B) restricts to a morphism in Homay, (A, F(B)). Thus ®4 p is a bijection. We want to show
that the bijection is functorial in A and B. Let g : A’ — A be a morphism of abelian groups. We want the diagram
below to commute. Let f € Homay, (A, F(B)) as before. Then ®4 5(f) o L(g) : L(A’) — B extends the morphism
fog: A" — F(B). By definition, ® 4- g(f o g) is also a morphism that extends f og. The uniqueness in our choices
of this morphism implies ® 4 p(f) o L(g) = @4/ p(f 0 g) and the diagram commutes. The argument for B is similar
so the bijection is functorial in A and B. Therefore, L is a left adjoint to F.

Homap (A, F(B)) —22 Homcring(L(A), B)

fog l—oL(g)

Homap (A, F(B)) 2% Homering(L(4'), B)

We will now show that left adjoints preserve initial objects. Let L : C — D and R : D — C be an adjoint
pair. Let A € Ob(C) be an initial object. Then Homp(L(A), B) ~ Hom¢ (A, R(B)) for any B € Ob(D). But A
initial in C implies Hom¢ (A, R(B)) has only one element. We conclude that Homp(L(A), B) has only one element
and L(A) is initial in D. We want to show that F' does not have a right adjoint. We note that Z is initial in
CRings, but F(Z) ~ {+1} ~ Z/2Z since t1 are the only units in Z. The abelian group Z/2Z is not initial since
Homay(Z/27Z,7Z/27) has two elements, the trivial morphism and an isomorphism. Thus F' cannot have a right
adjoint.

Definition 9. Alternatively, F' and G form an adjunction pair with F' a left adjoint to G and G a right adjoint to
F if there are natural transformations € : F'G — 1¢ and 1 : 1p — GF such that

F- 2 paF —<E S, R

G "% GFG -5 ¢
are the identity transformations on F' and G respectively. We call ¢ the counit and 7 the unit.

To derive the unit and counit from our earlier definition, note that an adjoint pair F': C - D and G: D — C
defines a natural transformation of functors

HomD(F(_)v _) - HOmc(—, G(_))
For an object X in C, we obtain a morphism
Homp(F(X), F(X)) —» Home (X, G(F(X))).

that sends idp(x) to a morphism X — G(F(X)). There is a similar setup for an object Y in D. These adjunction
maps are functorial in X and Y so we obtain the unit and counit described above.



Definition 10. Let F': C — D be a functor of locally small categories. Define the set map
vx,y : Home(X,Y) — Homp(F(X), F(Y))

to be px,y(f) = F(f) for any two objects X and Y of C. The functor F' is faithful if px y is injective for each
pair of objects. The functor F'is full if ¢ x y is surjective for each pair of objects.

Fall 2018 Problem 7. Let F': C — D be a functor with a right adjoint G. Show that F' is fully faithful if and
only if the unit of the adjunction n : Id¢ — GF' is an isomorphism.

Let € : FG — 1p be the counit of the adjunction. (=) Assume F is fully faithful. We will show that 7y : Y —
GF(Y) is an isomorphism. Let f,g : X — Y be morphisms in C such that ny o f = ny o g. By the adjunction,
Home (X, GF(Y)) ~ Homp(F(X), F(Y)) so ny o f and ny o g map to the same morphism & : F(X) — F(Y). Since
F is fully faithful, Fxy : Home(X,Y) — Homp(F(X),F(Y)). Thus f = g and 7y is left cancellative. Since F is
full, we have h : GF(X) — X such that F'(h) = ep(x) for each X € Ob(C). Then

epx) o F(nx oh) = (epx) o F(nx)) o F(h) = F(h) = ep(x) = ep(x) © F(lx)

for all X € Ob(C). Note that F' is faithful so nx o h = 1x and 7x is right cancellative. We conclude 7 is an
isomorphism.

(<) Assume 7 is an isomorphism. Let f € Home(X,Y). Since ny is an isomorphism, 7y o — is a natural
isomorphism Home (X, Y) ~ Home (X, GF(Y')). Via the adjunction, ep(yyoF(nyof) = epyyoF(ny)oF (f) = F(f).
As a result, Home (X,Y) ~ Home (X, GF(Y)) ~ Homp (F(X), F(Y)) via Fxy and F is fully faithful.

X F(X) F(f)

lf nyf lF(nm
Y - GR(Y) Fv) 2 pary) 59 B(Y)

Definition 11. A monomorphism is a left-cancellative morphism. In other words, f is a monomorphism if

(fogr=fog2)= (91 =go)

for all suitable morphisms ¢, and g». An epimorphism is a right-cancellative morphism. In this case, g is an
epimorphism if

(ficg=faog)= (f1 = fa)

for all suitable morphisms f; and fo.

Monomorphisms are the categorical analog of injective functions while epimorphisms are the categorical analog
of surjective functions.

Fall 2015 Problem 1. Show that the inclusion Z — @ is an epimorphism in the category of rings with
multiplicative identity.

We want to show that f : Z — Q is right cancellative. Let g,h : @ — R be ring homomorphisms such that
gf = hf for R a ring with identity. For a,b € Z we have

g (%) =g(a)g(b™1) = g(a)g(d)™' = h(a)h(b)™* = h (%)

since g(a) = g(f(a)) = h(f(a)) = h(a) for all a € Z. We conclude g = h and f is an epimorphism



Spring 2018 Problem 5. Let C be a category. A morphism f : A — B in C is called an epimorphism if for
any two morphisms g,h: B — X inC, go f = ho f implies g = h. Let ALG be the category of Z-algebras, and
let MOD be the category of Z-modules.

(a) Prove that in MOD, f: M — N is an epimorphism if and only if f is a surjection.
(=) We will prove the contrapositive. Assume that f : M — N is not surjective. Then im(f) < N is a proper
Z-submodule. We define 7 : N — N/im(f) the canonical projection and g : N — N/im(f) the zero Z-module
homomorphism. Then gf and 7 f are zero maps so gf = wf. Let n € N such that n ¢ im(f). Then g # 7 since
g(n) =0+ im(f) while g(n) =n + im(f) # 0+ im(f). We conclude that f is not an epimorphism
(«) Let f : M — N be surjective. Let g,h : N — P be Z-module homomorphisms such that gf = hf. Let

n € N, then n = f(m) for some m € M. As aresult, g(n) = g(f(m)) = h(f(m)) = h(n) so g = h. We conclude
that f is right-cancellative and f is an epimorphism.

(b) In ALG, does the equivalence of epimorphism and surjection hold? If yes, prove the equivalence, and if no,
give a counterexample (as simple as possible).

Let ¢ : Z — Q be the canonical inclusion morphism of Z-algebras. By Fall 2015 Problem 1, this morphism is a
non-surjective epimorphism.

In more recent years, there have been problems about abelian categories. The prototypical example of an abelian
category is R-Mod for a ring R. If the finite product and finite coproduct constructions are isomorphic in a category,
we refer to the operation as a direct sum. As an example, see the direct sum in Ab.

Definition 12. An object that is both initial and terminal is a zero object.

Definition 13. An additive category is a category admitting a zero object, any two pairs of objects admits a direct
sum, and every Hom set has an abelian group structure.

Definition 14. The kernel of a morphism f : X — Y is an object ker(f) together with a morphism i : ker(f) — X
that satisfies the following universal property. If there is a morphism gx : Z — X such that fog = 0zy, then
there is a unique morphism u : Z — ker(f) such that g =i ow.

The dual notion (where we flip the arrows) is a cokernel of f: X — Y denoted coker(f).

In a category like R-Mod, the categorical kernel of a morphism f : X — Y is an equivalent notion to that of
our standard element-wise kernel. Further, the cokernel can be thought of as Y /im(f).

Definition 15. An abelian category is an additive category in which each morphism has a kernel and cokernel and,
for each f: X — Y, the canonical morphism coker(ker(f)) — ker(coker(f)) is an isomorphism.

The purpose of abelian categories is that it is the most general setting in which we can discuss exact sequences.
Homological algebra is the study of abelian categories.

Definition 16. An object P is projective if for any epimorphism e : E — X and morphism f : P — X, there is a
morphism g : P — E such that eog = f.

P
9. lf

K’ .
EF— X

Definition 17. An object P is injective if for any monomorphism m : X — Y and morphism g : X — @, there is
a morphism h : Y — @ such that hom = g.



Example 4. In the category of abelian groups, the projective objects are free abelian groups. The injective objects
in the category of abelian groups are necessarily divisible. Assuming the axiom of choice, every divisible group is
injective.

Spring 2019 Problem 10. Let C be an abelian category. Prove TFAE:
(1) Every object of C is projective.
(2) Every object of C is injective.

(1) = (2): Assume that every object is projective. Let m : X — Y be a monomorphism for which there is a
morphism g : X — (. We can build the short exact sequence

0 x sy s¢ 0
where C' = coker(m). We have the diagram
C
7 llc
<
Y — C.

The morphism C' — Y guaranteed by C' projective is a splitting. In an abelian category left and right split are
equivalent so there is a morphism s : Y — X such that som = 1x. Define h = go s and

hom=(gos)om=go(som)=g.

Thus @ is injective.
(1) <= (2): Make a similar argument since a short exact sequence will split with an injective first entry.



