
Math 210A Discussion Week 1

Matthew Gherman

October 5, 2012

Fall 2014 Problem 6. Let G be a finite group and let p be the smallest prime number dividing the order of
G. Assume G has a normal subgroup H of order p. Show that H is contained in the center of G.

Conjugating elements of H by G is a group action since H is a normal subgroup. The fixed points of the action
are exactly the elements of H in ZpGq. Thus p “ |H| “ |ZpGq XH| `

ř

hRZpGq |Orbphq|. The identity is contained

in H and ZpGq which implies |H X ZpGq| ě 1 and |Orbphq| ă p for all h R ZpGq. Orbit-Stabilizer gives us
|Orbphq| “ rG : Stabphqs so |Orbphq| divides |G|. Since p is the smallest prime that divides |G|, we conclude there
are no elements h R ZpGq. Thus H Ă ZpGq.

Spring 2016 Problem 9. Show that if G is a finite group acting transitively on a set X with at least two
elements, then there exists g P G which fixes no point of X.

Let n “ |G| and k “ |X| ě 2. Define Fixpgq “ tx P X : g ¨ x “ xu. For each g P Stabpxq, we have
x P Fixpgq “ tx P X : gx “ xu and visa versa. We conclude

ř

xPX |Stabpxq| “
ř

gPG |Fixpgq|. By Orbit-Stabilizer
and |G| finite, |Stabpxq| “ |G|{|Orbpxq| for all x P X. But G acts transitively on X so |Orbpxq| “ |X| “ k and
|Stabpxq| “ n

k . Then
ř

gPG |Fixpgq| “
ř

xPX
n
k “ n. Since |Fixpeq| “ k ě 2, we have

ř

gPG,g‰e |Fixpgq| ă n ´ 1. If
all non-identity g P G have |Fixpgq| “ 1, we would have

ř

gPG,g‰e |Fixpgq| “ n ´ 1. By the pigeonhole principle,
there is some g such that |Fixpgq| “ 0 as desired.

Fall 2018 Problem 1. Let Q8 “ t˘1,˘i,˘j,˘ku be the quaternion group of order 8.

(a) Show that every non-trivial subgroup of Q8 contains ´1.

Let H Ă Q8 be a non-trivial subgroup. If ´1 P H, then we are done. Otherwise, one of t˘i,˘j,˘ku is in H.
But p˘iq2 “ p˘jq2 “ p˘kq2 “ ´1 P H. Therefore, each non-trivial subgroup of Q8 contains ´1.

(b) Show that Q8 does not embed in the symmetric group S7 (as a subgroup).

Let φ : Q8 Ñ S7 be an injective group homomorphism. This defines a group action of Q8 on the set X “

tx1, . . . , x7u via g ¨ xi “ xφpgqpiq for g P Q8. The orbits of the action partition X so |X| “
ř

xPX |Orbpxq|.
By Orbit-Stabilizer, |Orbpxq| “ rQ8 : Stabpxqs “ |Q8|{|Stabpxq| by |Q8| finite. Note Stabpxq is a non-trivial
subgroup of Q8 for all x P X since |Q8|{|Stabpxq| “ 8 ą 7, a contradiction. By (a), ´1 P Stabpxq for all x P X
so φp´1q “ e. This contradicts the injectivity of φ.

Spring 2019 Problem 8. Prove that every finite group of order n is isomorphic to a subgroup of GLn´1pCq.

By Cayley’s Theorem, there is an injective homomorphism from G to Sn. There is an injective homomorphism Sn
to GLnpCq given by permuting the elements of Cn once a basis has been chosen. Let v P Cn be the vector of all 1s,
which is an eigenvector for each permutation matrix. Each permutation matrix in the basis β “ tv, e2, . . . , enu for
Cn will be a block matrix of p1q and a permutation matrix in GLn´1pCq. Thus there is an injective homomorphism
of Sn to GLn´1pCq. Compose this with the injection from Cayley’s Theorem to prove the claim.
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Spring 2020 Problem 7. Let G be a finite p-group and 1 ‰ N Ă G be a non-trivial normal subgroup.

(a) Show that N contains a non-trivial element of the center ZpGq of G.

Conjugating elements of N by G is a group action since N is a normal subgroup. The fixed points of the
action are exactly the elements of N in ZpGq. Thus |N | “ |ZpGq XN | `

ř

hPN,hRZpGq |Orbphq|. The identity is

contained in N and ZpGq which implies |N X ZpGq| ě 1. By Orbit-Stabilizer, |Orbphq| “ |G|{|Stabphq|, which
is divisible by p. Then |N |´

ř

hPN,hRZpGq |Orbphq| “ |ZpGqXN | is divisible by p, and there is some non-trivial

element of ZpGq XN .

We will cover the non-finite case when we talk about Sylow p-subgroups.

(b) Give an example where ZpNq Ć ZpGq.

Take G “ D4, the dihedral group of order 8. Let N “ xry be the cyclic subgroup of G generated by rotation
by π

2 counter-clockwise. Then ZpNq “ N but ZpGq “ xr2y.
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Math 210A Discussion Week 3

Matthew Gherman

October 12, 2021

A free group is a group containing all words on a set of letters S. Given a function f from S to G, there exists
a unique group homomorphism ϕ : F Ñ G such that ϕ restricts to f on X.

Spring 2017 Problem 3. Find the number of subgroups of index 3 in the free group F2 “ xu, vy on two
generators. Justify your answer.

Let X “ t1, 2, 3u be a set of order 3. Assume there is a transitive group action of F2 on X. Then Stabp1q is a
subgroup of G with rG : Stabp1qs “ |Orbp1q| “ 3 by Orbit-Stabilizer. Now assume H is an index 3 subgroup of
F2. Then the set F2{H of left cosets has order 3. We have a transitive group action of F2 on the set F2{H given
by left multiplication. Let g P F2. We have g ¨H “ H if and only if g P H. As a result, StabpHq “ H. The two
situations describe a bijection between index 3 subgroups of G and stabilizers of transitive group actions on sets of
three elements.

We will find the number of transitive group actions of F2 on the set X “ t1, 2, 3u with H :“ Stabp1q. In the
case of |X| “ 3, this is equivalent to finding a homomorphism φ : F2 Ñ S3 whose image contains a 3-cycle. The
image of u and v under φ uniquely determines φ by the universal property of free groups. We will break into cases.
Note that 2 and 3 can are interchangeable so φpuq “ p13q cases produce the same stabilizers of 1 as the φpuq “ p12q
cases. Similarly, we do not have to consider φpuq “ p132q.

φpuq “ e implies φpvq P tp123q, p132qu

φpuq “ p12q implies φpvq P tp13q, p23q, p123q, p132qu

φpuq “ p23q implies φpvq P tp12q, p13q, p123q, p132qu

φpuq “ p123q implies φpvq P te, p12q, p13q, p23q, p123q, p132qu

The symmetry of 2 and 3 also allows us to remove the cases tφpuq “ e, φpvq “ p132qu, tφpuq “ p23q, φpvq “ p13qu,
and tφpuq “ p23q, φpvq “ p132qu. We are left with 13 suitable group homomorphisms φ : F2 Ñ S3 for which Stabp1q
determines all distinct subgroups of F2 of index 3.

Let S be a subset of a group G. The normalizer NGpSq “ tg P G : gSg´1 “ Su. We can prove that NGpSq is a
subgroup of G. Note that for S “ H, a subgroup of G, H is a normal subgroup of NGpHq.

The commutator subgroup rG,Gs of a group G is the subgroup generated by ghg´1h´1 for g, h P G. It is the
smallest subgroup of G such that G{rG,Gs is an abelian group. In other words, G{N is abelian if and only if N
contains rG,Gs.

Fall 2017 Problem 2. Let G be a finite group of order a power of a prime number p. Let ΦpGq be the subgroup
of G generated by elements of the form gp for g P G and ghg´1h´1 for g, h P G. Show that ΦpGq is the intersection
of the maximal proper subgroups of G.

Let G be a p-group that acts on a finite set X. We will first show that |XG| ” |X| (mod p) where

XG “ tx P X : |Orbpxq| “ 1u.

The orbits partition X so
|X| “ |XG| `

ÿ

xPX,xRXG

|Orbpxq|.
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By Orbit-Stabilizer, |Orbpxq| “ rG : Stabpxqs “ |G|{|Stabpxq| with |G| finite. For each x R XG, we have

|Orbpxq| “ |G|{|Stabpxq| ą 1

so p will divide |G|{|Stabpxq| “ |Orbpxq|. Therefore, |X| ” |XG| modulo p.
Let |G| “ pk. Let H Ă G be a maximal proper subgroup of G so |H| “ pk´1. Let H act on the left cosets of

H in G by left multiplication. If aH P XH , then bpaHq “ aH for all b P H. Thus aba´1 P H and a P NGpHq.
Similarly, taking some a P NGpHq gives aH P XH . Therefore, XH “ rNGpHq : Hs and the above result implies
rNGpHq : Hs ” rG : Hs ” 0 (mod p). Then index rNGpHq : Hs divides rG : Hs so it is either 1 or p. We conclude
that rNGpHq : Hs “ p and NGpHq “ G since |H| “ pk´1. Thus H is a normal subgroup of G so the set G{H is a
group of order p. The only such group is the cyclic group Z{pZ so G{H » Z{pZ. If g R H for g P G, then gH is a
generator of G{H so pgHqp “ gpH “ H. H contains elements of the form gp for g P G. Further, G{H is abelian
so the canonical projection p : GÑ G{H factors through π : G{rG,Gs for rG,Gs the commutator subgroup. Thus
kerpπq “ rG,Gs Ă kerppq “ H and H contains all elements of the form ghg´1h´1 for g, h P H. Therefore, ΦpGq is
contained in the intersection of the maximal proper subgroups of G.

For each g R ΦpGq, we want to show that there is a maximal proper subgroup M Ă G that does not contain g.
The commutator subgroup of G is normal. Let g, h P G. Then hgph´1 “ phgh´1qp P ΦpGq so ΦpGq is a normal
subgroup of G. Every element g P G with g R ΦpGq corresponds to a coset g “ gΦpGq P G{ΦpGq. By gp P ΦpGq for
all g P G, G{ΦpGq is a group where each element divides order p. Since the commutator subgroup is contained in
ΦpGq, G{ΦpGq is a finite abelian group with only elements of order dividing p. We can view G{ΦpGq as an Fp-vector
space so take an Fp-basis tg, x1, . . . , xku for G{ΦpGq. Let xi be a lift of xi in G. Define the subgroup M generated
by ΦpGq Y tx1, . . . , xku. Since g R M by construction, M is a proper subgroup of G. Further, M Y tgu “ G so
G is a maximal proper subgroup of G that does not contain g. We conclude that the intersection of the maximal
proper subgroups of G is contained in ΦpGq.

The set of automorphisms of a group G forms a group, denoted AutpGq. The set of inner automorphisms, those
represented by conjugation by some g P G, is a subgroup of AutpGq. We denote these InnpGq.

Fall 2018 Problem 2. Let G be a finitely generated infinite group having a subgroup of finite index n ą 1.
Show that G has finitely many subgroups of index n and has a proper characteristic subgroup (i.e. preserved by
all automorphisms) of finite index.

There are finite groups for which the statement does not hold. Conjugation by an element of a group is an
automorphism of the group (called an inner automorphism). Thus every characteristic subgroup of a group is
normal. The finite group A5 is simple and thus contains no non-trivial characteristic subgroups. Assume G is
infinite.

Let H Ă G be a subgroup of index n. Then G acts on the set of left cosets G{H “ tg1H, g2H, . . . , gnHu via left
multiplication. This defines a group homomorphism φ : GÑ Sn such that g ¨giH “ gφpgqpiqH. Note that g ¨H “ H
if and only if g P H. Thus StabpHq “ H implying a one-to-one correspondence between the index n subgroups of
G and homomorphisms φ : G Ñ Sn. Let G be finitely generated by tx1, . . . , xku, say. Then the image of each xi
in Sn determine uniquely each homomorphism φ : GÑ Sn. There are n! choices for the image of each xi so there
are finitely many homomorphisms φ : GÑ Sn. We conclude there are finitely many index n subgroups of G.

Let σ P AutpGq and H Ă G be the index n subgroup in the problem statement. Now σpHq is a subgroup of
G since σ is an automorphism. Note that the cosets are σpGq{σpHq “ G{σpHq “ tσpg1qσpHq, . . . , σpgnqσpHqu so
σpHq is an index n subgroup of G. Define N :“

Ş

σPAutpGq σpHq. There are finitely many index n subgroups of G so

N “
Şm
i“1Hi for some index n subgroups Hi Ă G. We want to show that N is a proper characteristic subgroup of

finite index in G. It is clear that N is a subgroup that is fixed under all automorphisms of G. We can define a group
action of G on

śm
i“1G{Hi by component-wise left multiplication. Then StabpH1, H2, . . . ,Hmq “

Şm
i“1Hi “ N

since gHi “ Hi if and only if g P Hi. By Orbit-Stabilizer,

rG : N s “ rG : StabpH1, H2, . . . ,Hmqs “ |OrbpH1, H2, . . . ,Hmq| ď |OrbpH1q| ¨ ¨ ¨ |OrbpHnq| “ rG : H1s ¨ ¨ ¨ rG : Hms.

Since each Hi is of finite index, rG : N s is finite. Therefore, N is a characteristic subgroup of G of finite index.
Note that N cannot be all of G since it is a subgroup of a H and N is not trivial since it is a finite index subgroup
of an infinite group.
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Fall 2015 Problem 8. Let F be a field. Show that the group SLp2, F q is generated by the matrices

ˆ

1 e
0 1

˙

and

ˆ

1 0
e 1

˙

for elements e in F .

The group SLp2, F q is all 2 ˆ 2 contains matrices with determinant one. Let A “

ˆ

a b
c d

˙

be a general matrix

in SLp2, F q. Case 1: If a “ 0 or d “ 0, then c “ ´b´1.

ˆ

1 e
0 1

˙ˆ

1 0
´e´1 1

˙

“

ˆ

0 e
´e´1 1

˙

ˆ

0 e
´e´1 1

˙ˆ

1 ep1´ aq
0 1

˙

“

ˆ

0 e
´e´1 a

˙

ˆ

1 0
´e´1 1

˙ˆ

1 e
0 1

˙

“

ˆ

1 e
´e´1 0

˙

ˆ

1 ep1´ aq
0 1

˙ˆ

1 e
´e´1 0

˙

“

ˆ

a e
´e´1 0

˙

Case 2: If b “ 0 or c “ 0, then d “ a´1.

ˆ

0 ´be
e´1b´1 0

˙ˆ

0 e
´e´1 ´e´1b´1a

˙

“

ˆ

b a
0 b´1

˙

ˆ

0 ´e´1

e ´e´1b´1a

˙ˆ

0 e´1b´1

´be 0

˙

“

ˆ

b 0
a b´1

˙

Case 3: Assuming nonzero a, b, c, d P F , then A “

ˆ

d´1p1` bcq b
c d

˙

.

ˆ

b a
0 b´1

˙ˆ

c 0
d c´1

˙

“

ˆ

bc` ad ac´1

b´1d b´1c´1

˙

Then pb´1c´1q´1p1 ` pac´1qpb´1dqq “ bcp1 ` ab´1c´1dq “ bc ` ad, the first row, first column entry above. We

conclude SLp2, F q is generated by

ˆ

1 e
0 1

˙

and

ˆ

1 0
e 1

˙

for e P F .

Fall 2015 Problem 10. Let p be a prime number. For each abelian group K of order p2, how many subgroups
H of Z3 are there with Z3{H isomorphic to K.

Note that Z3 is abelian so each subgroup H Ă Z3 is normal. Let S be the set of surjective group homomorphisms
f : Z3 Ñ K and T be the set of all subgroups H of Z3 for which Z3{H » K. Then define a set map Φ : S Ñ T by
Φpfq “ kerpfq. Let AutpKq be the group automorphism of K, and AutpKq acts on S by post-composition. Denote
by S{AutpKq the set of orbits of S under the action by AutpKq. Let σ P AutpKq, then kerpσ ˝ fq “ kerpfq since σ
is injective. As a result, Φ : S{AutpKq Ñ T is a well-defined set map. Surjectivity of Φ follows from the fact that
each subgroup H for which Z3{H » K defines a surjective group homomorphism f : Z3 Ñ Z3{H » K.

We want to show that Φ is injective. Let f, g P S such that kerpfq “ kerpgq. By the universal property of
quotients, f factors through Z3{ kerpfq, and there is some isomorphism α : Z3{ kerpfq Ñ K such that α ˝ π “ f for
π : Z3 Ñ Z3{H the canonical quotient homomorphism. Similarly, β ˝π “ g for an isomorphism β : Z3{ kerpgq Ñ K.
Then f “ pα ˝ β´1q ˝ g where pα ˝ β´1q P AutpKq, and f and g are in the same AutpKq-orbit of S. We conclude
that Φ is a bijection.

It is sufficient to find the number of surjective group homomorphisms f : Z3 Ñ K for each K. There are only
two abelian groups of order p2: Z{p2Z and Z{pZ ˆ Z{pZ. Case 1: Let K “ Z{p2Z. We need only find images
for the 3 generators of the free abelian group Z3. Let x, y P Z{p2Z be non-generating elements. They are classes
represented by integers divisible by p. Then representatives of x` y are divisible by p and x` y does not generate
Z{p2Z. Thus at least one of the generators of Z3 must map to a generator of Z{p2Z in order for the homomorphism
to be surjective. There are φpp2q “ p2 ´ p generators of Z{p2Z for Euler’s totient function ϕ. There are p6 total
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homomorphisms and p3 homomorphisms that are not surjective. Since |AutpZ{p2Zq| “ ϕpZ{p2Zq “ p2 ´ p, there

are p6´p3

p2´p “ p4 ` p3 ` p2 total subgroups H of Z3 for which Z3{H » Z{p2Z.

Case 2: Let K “ Z{pZ ˆ Z{pZ. Once again, we need only find images for the 3 generators of the free abelian
group Z3. Note that K is no longer generated by just one element. For the homomorphism to be surjective, we
need the image of at least two of the generators of Z3 to map to generators of K. This equates to sending one
generator to a nontrivial element a P K and sending a second to an element outside the subgroup generated by a
in K. The subgroup generated by a will have order p. We have three scenarios. If the first generator is sent to a
nonzero a P K, we have pp2 ´ 1qpp2 ´ pqpp2q ` pp2 ´ 1qppqpp2 ´ pq options depending on the image of the second
generator. If the first generator is sent to zero, we have pp2 ´ 1qpp2 ´ pq options. In total, we have p6 ´ p4 ´ p3 ` p
surjective homomorphisms. There are pp2 ´ 1qpp2 ´ pq “ p4 ´ p3 ´ p2 ` p automorphisms of K which implies
p6´p4´p3`p
p4´p3´p2`p “ p2 ` p` 1 subgroups H of Z3 such that Z3{H » Z{pZˆ Z{pZ.

Spring 2017 Problem 1, Fall 2019 Problem 6. Choose a representative for every conjugacy class in the
group GLp2,Rq. Justify your answer.

Each conjugacy class of matrices in GLp2,Rq has a unique representative in rational canonical form. For 2 ˆ 2
matrices, the invariant factors of A P GLp2,Rq could be tfu for f “ x2´ax´b P Rrxs or tg, hu where g|h. Since the
sum of the degrees of g and h is 2, we see that degpgq “ degphq “ 1. We can take g and h monic so g “ h “ x´ c
for some c P R. Thus the possible rational canonical forms for a matrix in GLp2,Rq are

ˆ

0 b
1 a

˙

or

ˆ

c 0
0 c

˙

for a, b, c P R. Each conjugacy classes of GLp2,Rq has a representative of the form above.

4



Math 210A Discussion Week 4

Matthew Gherman

October 19, 2021

We will briefly review Sylow’s Theorems and semi-direct products. Let G be a finite group with |G| “ pnm
where n ě 1 and gcdpp,mq “ 1.

(1) For every prime factor p of |G|, there exists a Sylow p-subgroup of G.

(2) All Sylow p-subgroups are conjugate by some element of G.

(3) Let np be the number of distinct Sylow p-subgroups of G. Then np divides m and np ” 1 (mod p).

A semi-direct product of two groups H and K, denoted H¸ϕK, is the direct product as a set with multiplication
defined as ph1, k1q ¨ ph2, k2q “ ph1ϕpk1qph2q, k1k2q where ϕ : K Ñ AutpHq is a group homomorphism. In particular,
the homomorphism ϕ determines conjugation of an element in H by an element in K:

pe, kq ¨ ph, eq ¨ pe, kq´1 “ pϕpkqphq, eq.

If the homomorphism ϕ : K Ñ AutpHq is trivial, the semi-direct product is the standard direct product. Possibly
the most useful result about semi-direct products is as follows. If G is a group with a subgroup K and a normal
subgroup H such that G “ HK, then G » H ¸ϕ K for some homomorphism ϕ : K Ñ AutpHq. As a result, the
semi-direct product will play a central role in classifying finite groups.

Spring 2015 Problem 8. Let G be a finite group of order pq, where p and q are distinct primes. Show that

(a) G has a normal subgroup distinct from 1 and G

Without loss of generality, assume p ą q. Let mp denote the number of Sylow p-subgroups of G. By Sylow’s
Third Theorem, mp ” 1 (mod p) and mp divides q. Since q is prime, mp is either 1 or q. But q ı 1 (mod p)
since p ą q. Thus mp “ 1. Conjugation of a subgroup H Ă G by g P G is again a subgroup of G of order |H|.
Thus we will obtain a Sylow p-subgroup of G when we conjugate a Sylow p-subgroup by any element g P G.
Since we have a unique Sylow p-subgroup P Ă G, gPg´1 “ P and P is normal in G.

(b) if p ı 1 (mod q) and q ı 1 (mod p), then G is abelian.

Without loss of generality, assume p ą q. By (a), the Sylow p-subgroup P Ă G is a normal subgroup of G.
Sylow’s Theorems imply the existence of some Sylow q-subgroup Q Ă G. The subgroup P XQ is a subgroup
of both P and Q. Then |P XQ| “ 1 since |P | and |Q| are relatively prime. All of this implies G “ P ¸Q for
some group homomorphism ϕ : Q Ñ AutpP q. We have AutpP q » Z{pp´ 1qZ. The generator a P Q has order
q so it needs to map to an element of order dividing q, leaving 1 or q. By assumption, p ı 1 (mod q) so ϕpaq
is the identity automorphism. Thus G » P ˆQ for P,Q cyclic (which implies abelian). We conclude that G is
abelian.

Fall 2015 Problem 5.

(a) Let G be a group of order pev with v and e positive integers, p prime, p ą v, and v not a multiple of p. Show
that G has a normal Sylow p-subgroup.

By Sylow’s Third Theorem, the number of Sylow p-subgroups mp satisfies mp ” 1 (mod p) and mp divides v.
Thus mp “ kp ` 1 for k ě 0. However, p ą v and mp|v implies k “ 0. We conclude mp “ 1. Let P be the
unique Sylow p-subgroup of G. As in Spring 2015 Problem 8, conjugation of P by an element g P G is another
Sylow p-subgroup. Thus gPg´1 “ P and P is a normal Sylow p-subgroup of G.
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(b) Show that a nontrivial finite p-group has a nontrivial center.

Let H be a nontrivial finite p-group. Thus |H| “ pk for k ą 0. Act on the set H by H via conjugation. An
element is fixed by conjugation if and only if the element is in the center of H. The class equation implies

|H| “ |ZpHq| `
ÿ

hPH,hRZpHq

|Orbphq|.

We have p||H| and |Orbphq| “ rG : Stabphqs by Orbit-Stabilizer. Thus p||Orbphq| for each h R ZpHq. We
conclude that p divides |ZpGq| “ |H| ´

ř

hPH,hRZpHq |Orbphq|. Note |ZpHq| ą 1 since the identity of H is

contained in the center. Thus |ZpHq| ě p so H has a nontrivial center.

Fall 2017 Problem 1. Let G be a finite group, p a prime number, and S a Sylow p-subgroup of G. Let
N “ tg P G|gSg´1 “ Su. Let X and Y be two subsets of ZpSq (the center of S) such that there is g P G with
gXg´1 “ Y . Show that there exists n P N such that nxn´1 “ gxg´1 for all x P X.

Let G act on a set X with g ¨ x “ y for g P G and x, y P X. We want to show that StabpY q “ gStabpxqg´1 Ă G.
Let h P Stabpyq. Then g´1hg ¨ x “ g´1h ¨ y “ g´1 ¨ y “ x so g´1hg P Stabpxq. We have g´1Stabpyqg Ă Stabpxq.
Next let k P Stabpxq. Then gkg´1 ¨ y “ gk ¨ x “ g ¨ x “ y and gStabpxqg´1 Ă Stabpyq. Since conjugation by an
element of a group is an invertible operation, Stabpyq “ gStabpxqg´1.

We can define an N -action on S via conjugation. Define StabpXq :“
Ş

xPX Stabpxq Ă G. Since X,Y Ă ZpSq,
we have S Ă StabpXq and S Ă StabpY q. Note that S is a Sylow p-subgroup of StabpXq and StabpY q. By the result
above applied to each y P Y , we have StabpY q “ gStabpXqg´1. Conjugation preserves the order of subgroups so
gSg´1 Ă StabpY q is a Sylow p-subgroup of StabpY q. By Sylow’s Second Theorem, the two Sylow p-subgroups S
and gSg´1 are conjugate in StabpY q. Thus there exists an h P StabpY q such that hpgSg´1qh´1 “ S. We note that
hg P N . Additionally, phgq ¨ x “ h ¨ pgxg´1q “ gxg´1 since h P StabpY q. Let n :“ hg P N and nxn´1 “ gxg´1 for
all x P X.

Spring 2018 Problem 9. Show that there is no simple group of order 616.

As in Spring 2015 Problem 8, conjugation of a Sylow p-subgroup by an element g P G is another Sylow p-subgroup.
If there is only one Sylow p-subgroup, then the Sylow p-subgroup is normal in G.

Let G be a group with order 616 “ 23 ¨7 ¨11. By Sylow’s Third Theorem, the number of Sylow 11-subgroups m11

divides 56 and is congruent to 1 modulo 11. Thus we could have m11 “ 1 or m11 “ 56. As we will show, m11 “ 1
implies the Sylow 11-subgroup is normal in G. Thus, assume m11 “ 56. Next, the number of Sylow 7-subgroups
m7 divides 88 and is congruent to 1 modulo 7. We could have m7 “ 1, 8, 22, 88. The argument will work for larger
choices for m7 so assume m7 “ 8. The intersection of a Sylow 7-subgroup and Sylow 11-subgroup must be trivial
by an order consideration. Thus the Sylow subgroups chosen account for p11 ` 55p10qq ` p8p6qq “ 609 elements.
A Sylow 2-subgroup of G will have order 8. As a result, there can be at most one Sylow 2-subgroup. Sylow’s
Theorems imply the existence of a Sylow 2-subgroup so mj “ 1 for some j P t2, 7, 11u. By the above argument, we
conclude that G has a normal subgroup and G is not simple.

Fall 2020 Problem 1. Let p ă q ă r be primes and G a group of order pqr. Prove that G is not simple and,
in fact, has a normal Sylow r-group.

We will first prove that G is not simple. Let np be the number of distinct Sylow p-subgroups, nq be the number
of distinct Sylow q-subgroups, and nr be the number of distinct Sylow r-subgroups. By Sylow’s Third Theorem,
we know the following

np ” 1 (mod pq, np|qr

nq ” 1 (mod qq, nq|pr

nr ” 1 (mod rq, nr|pq.

We conclude that nr “ 1, p, q, pq. Since r ą p and r ą q, p and q can’t be congruent to 1 modulo r. Thus nr “ 1
or nr “ pq. If nr “ 1, we’re done so assume nr “ pq. Every Sylow r-subgroup contains the identity and r´ 1 order
r elements of G. Thus there are pqpr´ 1q “ pqr´ pq order r elements of G. Similarly, nq “ 1, p, r, pr. Since q ą p,
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p can’t be congruent to 1 modulo q. If nq “ 1, we’re done so assume that nq “ r, the smallest other possibility. As
above, there are rpq ´ 1q “ rq ´ r elements of order q in G. We have np “ 1, q, r, qr so assume that np “ q. Then
there are qpp´ 1q “ pq ´ q elements of order p in G. In total this accounts for

ppqr ´ pqq ` prq ´ rq ` ppq ´ qq ` 1 “ pqr ` rq ´ r ´ q ` 1

elements of G. Since r and q are greater than 1, rq ě r ` q and this exceeds the order of G. Thus there is some
normal Sylow subgroup and G is not simple.

Let N be a normal Sylow subgroup of G. If |N | “ r, we are done so assume |N | “ q without loss of generality.
Then G{N is a group of order pr, which implies that G{N has a normal subgroup of order r. By the subgroup
correspondence, there is a normal subgroup H of G containing N for which H{N is order r. Thus |H| “ qr and
H contains a normal subgroup of order r denoted Pr. We want to prove that Pr is normal in G. Let g P G. Then
|gPrg

´1| “ r and gPrg
´1 Ă H since H is normal in G. Since Pr is a normal Sylow r-subgroup of H, Pr is the

unique Sylow r-subgroup of H. We conclude that gPrg
´1 “ Pr and Pr is normal in G.

Fall 2020 Problem 2. Show that groups of order 231 “ p3qp7qp11q are semi-direct products and show that
there are exactly two such groups up to isomorphism.

Let G be a group of order 231 with P3 a Sylow 3-subgroup, P7 a Sylow 7-subgroup, and P11 a Sylow 11-subgroup.
Since |Pi X Pj | “ 1 for distinct i and j in t3, 7, 11u, we conclude that |G| “ |P3P7P11| and G “ P3P7P11. By Fall
2020 Problem 1, P11 is normal in G. Let n7 be the number of distinct Sylow 7-subgroups in G. Sylow’s Third
Theorem proves that n7 ” 1 (mod 7) and n7|33. The only option is n7 “ 1 and P7 is normal in G. Thus the cyclic
subgroup P7P11 of order 77 is normal in G and G » P7P11 ¸ϕ P3. We have AutpP7P11q » Z{6Z ˆ Z{10Z and P3

cyclic of order 3. Therefore, ϕ : P3 Ñ AutpP7P11q is either trivial or sends a generator of P3 to an order 3 element
of Z{6Z. The cases of the latter produce isomorphic semi-direct products so there are only two groups of order 231
up to isomorphism.
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Definition 1. Let G be a group. A representation of G is a homomorphism ρ : G Ñ GLpV q for some vector space
V over a field F . For finite groups G, we will denote by dimpρq the dimension of V as an F -vector space.

Definition 2. Let ρ : G Ñ GLpV q be a representation of a group G. A subspace W of V is G-invariant if
ρpgqw P W for each g P G. An irreducible representation ρ : G Ñ GLpV q is one in which there is no non-trivial,
proper G-invariant subspace of V .

Definition 3. Let G be a group and F a field. We can define the group algebra, denoted F rGs, as the free vector
space over F generated by the set G together with multiplication induced by the group law.

Example 1. Let G be cyclic of order n generated by g P G. Then every element of F rGs can be written as
řn´1

i“0 aig
i where ai P F . The multiplication works as follows

g ¨

˜

n´1
ÿ

i“0

aig
i

¸

“ an´1e `

n´1
ÿ

i“1

ai´1g
i

where e is the identity element of G.

A representation ρ : G Ñ GLpV q gives V the structure of an F rGs-module. An F rGs-module V defines a
representation ρ : G Ñ GLpV q based on the action of each g P G on V . Further, isomorphic F rGs-modules
correspond to isomorphic representations, or representations that differ by a base change. Thus the two languages
are equivalent, and we will use the F rGs-module interpretation to find some nice properties of representations. For
the qualifying exam, we will almost always take F “ C and G finite.

Since C is characteristic 0 and algebraically closed, Artin-Wedderburn theorem implies that CrGs is a semi-
simple F -algebra. More concretely, this means that

CrGs »

k
ź

i“1

Mdi
pCq

whereMdi
pCq is the algebra of diˆdi matrices over C and visa versa. Each componentMdi

pCq defines an irreducible
representation ρi of dimension di over C. We have dimCpCrGsq “ |G| and dimCpMdi

pGqq “ d2i so

|G| “

k
ÿ

i“1

d2i .

In other words, the sum of squares of the dimensions of irreducible representations of G equals the order of G.
The center of the group algebra, ZpCrGsq, is all elements α P CrGs that commute with each basis element

g P CrGs. If α “
ř

gPG agg, we can show that α P ZpCrGsq if and only if ag “ ag1 whenever g and g1 are in
the same conjugacy class. Let C1, . . . , Ck be distinct conjugacy classes of G. Then tu1, . . . , uku is a basis for
ZpCrGsq where ui “

ř

gPCi
g. We conclude that dimpZpCrGsqq “ #pconjugacy classes of G). On the other hand,

ZpMdipCqq “ C ¨ Idi is one-dimensional so the number of irreducible representations of G over C is equal to the
number of conjugacy classes of G.

Example 2. Let G be a finite group. Two representations ρ : G Ñ GLnpCq and µ : G Ñ GLnpCq are isomorphic
if and only if ρpgq “ PµpgqP´1 for P P GLnpCq. Let ρ : G Ñ GL1pCq and µ : G Ñ GL1pCq be one-dimensional
representations. Then GLpCq » Cˆ and ρ is isomorphic to µ if and only if ρ “ µ.
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Example 3. Let A be a finite abelian group of order n. Then A has n distinct conjugacy classes, which implies n
non-isomorphic irreducible representations. The dimensions di of the irreducible representations satisfy n “

řn
i“1 d

2
i

so di “ 1 for each 1 ď i ď n.

Example 4. Let G be a finite group and ρ : G Ñ GL1pCq a one-dimensional irreducible representation. Then
GL1pCq » Cˆ is abelian so ρ factors through G{rG,Gs. We conclude that the number of one-dimensional irreducible
representations of G is equal to the order of G{rG,Gs.

Definition 4. Let ρ : G Ñ GLpV q be a representation. The character of ρ is defined as χρpgq “ trpρpgqq.

Example 5. Let ρ : G Ñ GLpV q and µ : G Ñ GLpW q be representations of a group G.

(1) If dimpρq “ 1, then χρpgq “ ρpgq.

(2) If ρ » µ, then χρpgq “ χµpgq for all g P G.

(3) χρ‘µpgq “ χρpgq ` χµpgq for all g P G.

(4) χρphgh´1q “ χρpgq for all g, h P G.

(5) For e P G the identity, χρpeq “ dimpρq.

Definition 5. Let ChpGq be the vector space of functions G Ñ F which are constant on conjugacy classes. Note
that the characters of a group G are elements of this vector space. We can define a bilinear form on ChpGq:

Bpχρ, χµq “
1

n

ÿ

gPG

χρpg´1qχµpgq.

The characters χi corresponding to the irreducible representations ρi form an orthonormal basis for ChpGq with
respect to B.

Theorem. Let ρ1, . . . , ρk be the irreducible representations of a finite groupG over C with corresponding characters
χ1, . . . , χk.

(1) Every finite-dimensional representation ρ is isomorphic to
Àk

i“1 ρ
Bpχρ,χiq

i .

(2) Two representations ρ and µ are isomorphic if and only if χρ “ χµ.

(3) A representation ρ is irreducible if and only if Bpχρ, χρq “ 1.

Example 6. Let ρ1, . . . , ρk be the irreducible representations of a finite group G with corresponding characters
χ1, . . . , χk. Let C1, . . . , Ck be the conjugacy classes of G. Then

k
ÿ

i“1

χipgj1qχipgj2q “ 0

for gjℓ P Cjℓ and j1 ‰ j2.

Example 7. The regular representation of G is given by acting on the vector space F rGs by left multiplication. The
representation will be ρ : G Ñ GLnpF q where n “ |G|. Each element ρpgq is a permutation matrix. Let tg1, . . . , gnu

be the group eleemnts of G which form a basis for F rGs as an F -vector space. If g is not the identity, then it
fixes no elements of the basis and χρpgq “ trpρpgqq “ 0. Let the irreducible representations of G be ρ1, . . . , ρk with

characters χ1, . . . , χk. We find that the regular representation breaks down as ρ “
Àk

i“1 ρ
di
i and χρ “

řk
i“1 diχi.

The regular representation can be helpful in coming up with higher dimensional representations for a group since
each irreducible representation is a direct summand.

Most of the qual problems on representation theory will ask us to find the character table of a given group G.
The character table for a group G is constructed as follows. Each row will represent the character of an irreducible
representation, which we will denote χ1, . . . , χk. Each column will represent a conjugacy class of G, which we will
denote C1, . . . , Ck. By above, the table will have the same number of rows and columns. The ith row, jth column
entry of the table will be χipgjq for gj P Cj .

A typical approach to one of these problems includes the following steps.

2



(1) Find the conjugacy classes of G. The number of conjugacy classes is the number of irreducible representations.

(2) The order of G{rG,Gs is the number of one-dimensional irreducible representations.

(3) Let di denote the dimension of the irreducible representation ρi with character χi. The equation |G| “
řk

i“1 d
2
i

along with the number of one-dimensional irreducible representations can sometimes help us determine the
dimensions of other irreducible representations.

(4) The column corresponding to the conjugacy class of the identity will be populated with the dimensions of each
irreducible representation.

(5) The trivial one-dimensional representation ρpgq “ 1 will provide a row of all 1s.

(6) The rows satisfy an orthogonality condition
řk

i“1 |Ci|χj1pgiqχj2pgiq “ 0 for j1 ‰ j2 and some representative

gi P Ci. Further
řk

i“1 |Ci||χjpgiq|2 “ n.

(7) The columns satisfy an orthogonality condition
ř

i“1 χipgj1qχipgj2q “ 0 for j1 ‰ j2 and gjℓ P Cjℓ .

3



Fall 2015 Problem 7, Spring 2016 Problem 8. Show the symmetric group S4 has exactly two isomorphism
classes of irreducible complex representations of dimension 3. Compute the characters of these two representations.
Find the full character table.

We will first show that the abelianization S4{rS4, S4s has order 2. The commutator subgroup rS4, S4s is generated
by elements ghg´1h´1 P S4. Each ghg´1h´1 is an even permutation so rS4, S4s Ă A4. The nonidentity elements of
A4 are of the form pijqpkℓq or pijkq for 1 ď i, j, k, ℓ ď 4. Without loss of generality, we will show p123q, p14qp23q P

rS4, S4s. Notice p23qp12qp23qp12q “ p123q P rS4, S4s and p123qp234qp132qp243q “ p14qp23q P rS4, S4s as desired.
Thus rS4, S4s “ A4 and |S4{rS4, S4s| “ 2.

Each one-dimensional representation of S4 is a group homomorphism ρ : S4 Ñ Cˆ. Since Cˆ is an abelian
group, ρ factors uniquely through the abelian group S4{rS4, S4s. If two one-dimensional representations are equal on
S4{rS4, S4s, then they are equal as homomorphisms from S4. Thus the number of one-dimensional representations
of S4{rS4, S4s is equal to the number of one-dimensional representations of S4. By above, S4{rS4, S4s has two
conjugacy classes so it has two one-dimensional irreducible representations. We conclude that S4 should have two
one-dimensional representations. (This works for one-dimensional irreducible representations of any group.)

Now the trivial representation and the sign representation, sgn : S4 Ñ Cˆ, are the two one-dimensional
representations of S4. The conjugacy classes of S4 are based on cycle type of which there are five. Since |S4| “ 24,
we have 24 “ 1 ` 1 ` a2 ` b2 ` c2 for a, b, c P N representing the dimensions of the three other irreducible
representations. If we take c ě 4, we are left with a2 ` b2 “ 6, which cannot occur. Thus 1 ă a, b, c ď 3. We
cannot have a “ b “ c “ 2 so, without loss of generality, take c “ 3. Then we need 13 “ a2 ` b2 so the only option
is a “ 2 and b “ 3. Thus S4 has two 3-dimensional irreducible representations.

We will now realize the two irreducible representations of dimension 3. Define the vector space

V :“

#

pviq P R4 :
4

ÿ

i“1

vi “ 0

+

.

Then V has a left S4 action via σpviq “ pvσpiqq for σ P S4 and tp´1, 1, 0, 0q, p´1, 0, 1, 0q, p´1, 0, 0, 1qu is a basis
for V . The action described gives an irreducible representation for S4 since p23qp´1, 1, 0, 0q “ p´1, 0, 1, 0q and
p24qp´1, 1, 0, 0q “ p´1, 0, 0, 1q. In other words, there is no S4-invariant subspace of V . Let ρ : S4 Ñ M3pCq denote
this 3-dimensional irreducible representation.

e (12) (123) (12)(34) (1234)
χsgn 1 -1 1 1 -1
χρ 3 1 0 -1 -1

Now ρ b sgn is an irreducible representation of S4 ˆ S4. Include S4 along the diagonal of S4 ˆ S4 to make ρ b sgn
a representation of S4. The character χρbsgnpgq “ χρpgqχsgnpgq gives the following row of the character table.

e (12) (123) (12)(34) (1234)
χρbsgn 3 -1 0 -1 1

We have an inner product on the space of class functions such as xχµ, χνy “ 1
|G|

ř

gPG χµpgqχνpg´1q. We know that

xχρbsgn, χρbsgny “ 1 if and only if ρ b sgn is an irreducible representation. We note that the number of elements
in each conjugacy class are 1, 6, 8, 3, 6 respectively. Since g´1 and g are in the same conjugacy class for all g P S4,

xχρbsgn, χρbsgny “
1

24
p1p9q ` 6p1q ` 8p0q ` 3p1q ` 6p1qq “ 1.

Thus ρ b sgn is the other irreducible representation of S4.
The only remaining row of the character table corresponds to the 2-dimensional irreducible representation which

we denote µ : S4 Ñ M2pCq. We will use column orthogonality to complete the table below.

e (12) (123) (12)(34) (1234)
χtrivial 1 1 1 1 1
χsgn 1 ´1 1 1 ´1
χµ 2 0 ´1 2 0
χρ 3 1 0 ´1 ´1

χρbsgn 3 ´1 0 ´1 1
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Fall 2016 Problem 4. Let D be a dihedral group of order 2p with normal cyclic subgroup C of order p for an
odd prime p. Find the number of n-dimensional irreducible representations of D (up to isomorphisms) over C for
each n, and justify your answer.

Let D :“ xr, s : rp “ s2 “ e, rs “ sr´1y be the dihedral group of order 2p. We will find the commutator subgroup
rD,Ds Ă D. Any element of the commutator subgroup is of the form prisqprjsqprisq´1prjsq´1 for some 0 ď i, j ď

p ´ 1. Reducing this, we end up with r2i´2j . Further, r
p`1
2 srp´

p`1
2 s´1 “ r

p`1
2 r

p`1
2 ss “ r

2p`2
2 “ r P rD,Ds.

Thus rD,Ds is the subgroup of D generated by r and |D{rD,Ds| “ 2. There are two non-isomorphic classes of
one-dimensional representations of D.

We now classify the conjugacy classes of Dp. Note that it is sufficient to conjugate each element only by the
generators r and s. The identity makes up one conjugacy class. When we conjugate s we notice risrp´i “ r2is.
Since p is odd, we can continue this process to obtain the conjugacy class ts, rs, . . . , rp´1su. When we conjugate
ri we have sris´1 “ sris “ rp´i for 1 ď i ď p´ 1. Conjugating by s again yields srp´is´1 “ srp´is “ ri. Thus we
have the conjugacy classes tri, rp´iu for 1 ď i ď

p´1
2 . In total, this is p`3

2 conjugacy classes.
Using the intuition of D as permutations of vertices of a regular p-gon, we can construct the classes of 2-

dimensional irreducible representations. Define the rotation by 2πk
p counterclockwise in the plane,

ϕkprq “

ˆ

cosp2πk{pq ´ sinp2πk{pq

sinp2πk{pq cosp2πk{pq

˙

and the reflection about the x-axis in the plane,

ϕkpsq “

ˆ

1 0
0 ´1

˙

for 1 ď k ď
p´1
2 . Each ϕk is an irreducible representation of D since there are no subspaces of C2 invariant

under these transformations. Further, these are non-isomorphic irreducible representations since the characters
χϕk

prq “ 2 cosp2πk{pq differ for each k.
The sum of the squares of the dimensions of these representations is 1 ` 1 `

`

p´1
2

˘

22 “ 2 ` p2p ´ 2q “ 2p,
the order of the group. Thus these are all isomorphism classes of irreducible representations of D over C. We
conclude that there are two one-dimensional and p´1

2 two-dimensional isomorphism classes of irreducible complex
representations of D.

Spring 2017 Problem 2. Let G be the group with presentation xx, y : x4 “ 1, y5 “ 1, xyx´1 “ y2y, which has
order 20. Find the character table of G.

We will first find the conjugacy classes of G. Note that we only need to check conjugation by the generators x
and y. Since xy “ y2x, we can write each element of G as yixj for some 0 ď i ă 5 and 0 ď j ă 4. Additionally,

pyixjqpykxℓqpyixjq´1 “ yi`2jkxj`ℓx´jy´i “ yi`2jkxℓy´i “ y´i`2jkxℓ

so the exponent of x remains unchanged by conjugation. By the formula above, conjugating ykxℓ by y will result
in yk´1xℓ. Thus the conjugacy classes are

t1u, ty, y2, y3, y4utx, yx, y2x, y3x, y4xu, tx2, yx2, y2x2, y3x2, y4x2u, tx3, yx3, y2x3, y3x3, y4x3u,

which implies 5 isomorphism classes of irreducible representations. We will now find the commutator subgroup
rG,Gs. The generators of rG,Gs have the form pyixjqpykxℓqpyixjq´1pykxℓq´1 “ py´i`2jkxℓqx´ℓy´k “ y´i`p2j´1qk.
We can pick i “ 4, j “ 0, k “ 0, and ℓ “ 1, which implies rG,Gs is the cyclic subgroup of G generated by y. Then
the number of isomorphism classes of one-dimensional representations is |G{rG,Gs| “ 4 by the argument in Fall
2015 Problem 7. There are 4 one-dimensional representations and 5 conjugacy classes. Since the order of G is the
sum of the squares of the dimensions of the irreducible representations, 20 “ 12 ` 12 ` 12 ` 12 ` k2 so k “ 4.

We will now determine the 4 one-dimensional representations. Since x is order 4, it must map to ˘1,˘i in Cˆ.
Similarly, y is order 5 so y must map to a fifth root of unity in Cˆ. The character is equal to the representation
in the one-dimensional case so the representation is the same on each conjugacy class. Let ρi : G Ñ Cˆ be one-
dimensional representations for 1 ď i ď 3 and µ : G Ñ GL4pCq be the 4-dimensional irreducible representation.
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For ρi : G Ñ Cˆ, ρipyq “ ρipy
2q “ ρipyq2 so ρipyq “ 1. We can fill in the character table below based on the image

of x. The last row of the table is found by column orthogonality.

1 y x x2 x3

χtrivial 1 1 1 1 1
χρ1

1 1 i ´1 ´i
χρ2 1 1 ´1 1 ´1
χρ3

1 1 ´i ´1 i
χµ 4 ´1 0 0 0

Spring 2018 Problem 6. Let G be a group with a normal subgroup N “ xy, zy isomorphic to pZ{2Zq2. Suppose
that G has a subgroup Q “ xxy isomorphic to the cyclic group Z{3Z such that the composition Q Ă G Ñ G{N is
an isomorphism. Finally, suppose that xyx´1 “ z and xzx´1 “ yz. Compute the character table of G.

We will find the conjugacy classes of G. Since xy “ zx and xz “ yzx, we can write every element of G as
yizjxk for 0 ď i, j ď 1 and 0 ď i ď 2. The relations allow reduction to the form yizjxk without changing the x
exponent. As a result, conjugation by any element will preserve the x exponent of any element. We will show that
the conjugacy classes are based on the exponent of x. The relations of G produce the conjugacy class ty, z, yzu. In
the equations below, we start with x.

yxy´1 “ yxy “ zx

ypzxqy´1 “ yz2x “ yx

zpzxqz´1 “ xz “ yzx

A similar argument starting with x2 gives the conjugacy class breakdown below.

teu, ty, z, yzu, tx, yx, zx, yzxu, tx2, yx2, zx2, yzx2u

Note that |G| “ 12. Thus the sum of 1 and three squares needs to be |G| “ 12. We cannot have an irreducible
representations of dimension higher than three. The only option is 12 “ 12 ` 12 ` 12 ` 32 so there should be three
isomorphism classes of one-dimensional representations and one isomorphism class of 3-dimensional irreducible
representations.

We will first classify the characters of the one-dimensional irreducible representations. Let ρi : G Ñ Cˆ for
1 ď i ď 3 be the one-dimensional representations. Since y and z are order 2 elements of G, they must map to
˘1 in Cˆ. Similarly, x will be sent to a third root of unity. The group Cˆ is abelian so ρpzq “ ρpxyx´1q “

ρpxqρpyqρpxq´1 “ ρpyq and ρpyzq “ ρpxzx´1q “ ρpxqρpzqρpxq´1 “ ρpzq. Let ξ be a primitive third root of unity.

We find the final row of the character table by column orthogonality and the identity
ř3

i“1 ξ
i “ 0.

1 y x x2

χtrivial 1 1 1 1
χρ1 1 1 ξ ξ2

χρ2
1 1 ξ2 ξ

χµ 3 ´1 0 0

Fall 2018 Problem 11. Let G be a finite group, ω be a primitive 3rd root of 1 in C and suppose that the
complex character table of G contains the row

1 ω ω2 1.

Determine the whole complex character table of G, the order of the group and the order of its conjugacy classes.

Note that the number of columns, four, determines the number of conjugacy classes of G and the number of
isomorphism classes of irreducible representations. The first row of the character table corresponds to the trivial
representation. Let ρ : G Ñ C be the one-dimensional representation described in the row given. Then we can
construct a one-dimensional representation ρ b ρ : G ˆ G Ñ C bC C » C. By including G in G ˆ G via the
diagonal homomorphism, we find ρ b ρ describes a one-dimensional representation with χρbρpgq “ χρpgq2. Since
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the characters χρbρ differ from the current rows, ρ b ρ describes a distinct isomorphism class of one-dimensional
representations.

By orthogonality of the second/third column and the first column, we find the zeros in the fourth row. Let
a :“ χµpeq and b :“ χµpgq for g P C4. Then ab “ ´3 by the orthogonality of columns one and four. Since a
represents the dimension of the irreducible representation µ : G Ñ MapCq, a ą 0 is an integer so b P Q. With |G|

finite, the trace of µpgq is the sum of eigenvalues that are all roots of unity. Thus b P Q is an algebraic integer so
b P Z. We conclude that a “ 1 and b “ ´3 or a “ 3 and b “ ´1. If a “ 1, then |G| “ 4. The order of some g P C2

must be divisible by 3 since ρpg3q “ ρpgq3 “ 1. This contradicts the order of G so a ‰ 1. Thus a “ 3 and b “ ´1.
As a result, |G| “ 12 ` 12 ` 12 ` 32 “ 12. The rows are orthonormal under the inner product xv, wy “

1
|G|

ř4
i“1 |Ci|viwi. Row three implies 1 “

9`|C4|

12 and |C4| “ 3. The inner product of rows two and one gives

0 “
1`|C2|ω`|C3|ω2

`3
12 . Similarly, the inner product of rows three and one gives 0 “

1`|C2|ω2
`|C3|ω`3
12 . Thus

|C2| “ |C3| with 8 elements between the two conjugacy classes. We conclude |C2| “ |C3| “ 4.

C1 “ teu C2 C3 C4

χtrivial 1 1 1 1
χρ 1 ω ω2 1

χρbρ 1 ω2 ω 1
χµ 3 0 0 -1

Fall 2019 Problem 7. Let G be the group of order 12 with presentation

G “ xg, h : g4 “ 1, h3 “ 1, ghg´1 “ h2y.

Find the conjugacy classes of G and the values of the characters of the irreducible complex representations of G of
dimension greater than 1 on representatives of these classes.

The final relation of G implies that gh “ h2g and gh2 “ hg. We can use these relations to write every element
of G as gihj for 0 ď i ď 3 and 0 ď j ď 2. Further, we have the relations h2g3 “ g3h and hg3 “ g3h2 by inverting
the above relations. Clearly, C1 “ teu is a conjugacy class. The relations

ghg´1 “ ghg3 “ h2

gh2g´1 “ gh2g3 “ h

show that C2 “ th, h2u is a conjugacy class. We find

hgh´1 “ hgh2 “ gh

hpghqh´1 “ gh2

gpghqg´1 “ g2hg3 “ gh2

hpgh2qh´1 “ hgh “ g

gpgh2qg´1 “ g2h2g3 “ gh

so C3 “ tg, gh, gh2u is a conjugacy class. By similar computation, we have conjugacy class C4 “ tg3, g3h, g3h2u.
The equations

hg2h´1 “ hg2h2 “ gh2gh2 “ g2

hpg2hqh´1 “ hg2 “ gh2g “ g2h

gpg2hqg´1 “ g3hg3 “ g2h2

hpg2h2qh´1 “ hg2h “ gh2gh “ g2h2

gpg2h2qg´1 “ g3h2g3 “ g2h

prove that C5 “ tg2u and C6 “ tg2h, g2h2u are conjugacy classes. All elements of G have been placed in conjugacy
classes.

The commutator rG,Gs has elements of the form ghg´1h´1 “ ghg3h2 “ h. Thus xhy Ă rG,Gs. We see that
G{xhy is cyclic of order 4 and, thus, abelian. We conclude rG,Gs “ xhy and there are |G{rG,Gs| “ 4 one-dimensional
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non-isomorphic irreducible representations of G. Each one-dimensional ρi : G Ñ Cˆ sends h to 1. The image of
g must be a fourth root of unity. Further, 12 “ 4 ` a2 ` b2 for a and b the dimensions of the other irreducible
representations of G. We see that a ă 3 and b ă 3 so a “ b “ 2 so we obtain the following character table.

e h g g2 g3 g2h
χ1 1 1 1 1 1 1
χ2 1 1 i ´1 ´i ´1
χ3 1 1 ´1 1 ´1 1
χ4 1 1 ´i ´1 i ´1
χ5 2
χ6 2

We will construct a two-dimensional irreducible representation of G over C. Define a set map µ on the generators

µpgq “

ˆ

0 1
´1 0

˙

µphq “

ˆ

e
2πi
3 0

0 e
4πi
3 .

˙

Then the image of g has order 4 in GL2pCq and the image of h has order 3 in GL2pCq. Further,

µpghg´1q “ µpgqµphqµpgq´1

“

ˆ

0 1
´1 0

˙ ˆ

e
2πi
3 0

0 e
4πi
3

˙ ˆ

0 ´1
1 0

˙

“

ˆ

e
4πi
3 0

0 e
2πi
3

˙

“ µphq´1

so µ : G Ñ GL2pGq is a group homomorphism as desired. There is no non-trivial, proper G-invariant subspace of
C2 which proves µ is irreducible. Compute the characters χ5 by taking the traces of the relevant matrices. We can
complete the final row of the character table by column orthogonality of column j with column 1.

e h g g2 g3 g2h
χ1 1 1 1 1 1 1
χ2 1 1 i ´1 ´i ´1
χ3 1 1 ´1 1 ´1 1
χ4 1 1 ´i ´1 i ´1
χ5 2 ´1 0 ´2 0 1
χ6 2 ´1 0 2 0 ´1
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Definition 1. A category C consists of a collection of objects ObpCq, a collection of morphisms between objects
HomCpX,Y q, and a composition operation ˝ on morphisms such that

(i) h ˝ pg ˝ fq “ ph ˝ gq ˝ f

(ii) for each object X of C there is a unique morphism idX that satisfies f “ f ˝ idX and g “ idX ˝g for morphisms
into or out of X.

Definition 2. A small category is one in which the objects and morphisms form a set. A locally small category
C is one in which HomCpX,Y q is a set for any two objects X and Y . Note that the collection of all morphisms in
the category might be too large to form a set.

Example 1. The most useful examples of categories for the qual are:

1. The category of sets (Sets)

2. The category of groups (Grps) with the full subcategory of abelian groups (Ab)

3. The category of rings (Rings) with the full subcategory of commutative rings (CRings)

4. The category of R-modules over a ring R (R-Mod)

For each term we define, we want to know the technical construction in each of the above categories. Once we’re
familiar with each category, we will hopefully be able to come up with simple counterexamples to qual problems.

Definition 3. Let X1 and X2 be objects of a category C. The product X1 ˆ X2 is equipped with morphisms
π1 : X1 ˆ X2 Ñ X1 and π2 : X1 ˆ X2 Ñ X2 and satisfies the following universal property. Given an object Y and
two morphisms f1 : Y Ñ X1 and f2 : Y Ñ X2, there is a unique morphism f : Y Ñ X1 ˆ X2 such that f1 “ π1 ˝ f
and f2 “ π2 ˝ f .

Y

X1 ˆ X2 X2

X1

f

f1

f2

π1

π2

We can extend this definition to a product on infinitely many objects of C which will be denoted
ś

i Xi. Dual
to the notion of a product is the coproduct.

Definition 4. Let X1 and X2 be objects of a category C. The coproduct X1

š

X2 is equipped with morphisms
ι1 : X1 Ñ X1 ˆ X2 and ι2 : X2 Ñ X1 ˆ X2 and satisfies the following universal property. Given an object Y and
two morphisms f1 : X1 Ñ Y and f2 : X2 Ñ Y , there is a unique morphism f : X1

š

X2 Ñ Y such that f1 “ f ˝ ι1
and f2 “ f ˝ ι2.

Y

X1

š

X2 X2

X1

f

ι2

f2

ι1
f1

1



We can likewise extend the definition of coproducts to infinite families of objects.

Example 2. 1. In Sets, the product is the cartesian product and the coproduct is disjoint union.

2. In Grps, the product is the direct product and the coproduct is the free product. In Ab, the product is direct
product while the coproduct is direct sum. For finite families, the product and coproduct coincide in Ab.

3. In Rings, the product is direct product and the coproduct is similar to the free product on groups. In CRings,
the product is direct product and finite coproducts are given by tensoring over Z.

4. Finite products and coproducts are isomorphic and given by the direct sum in R-Mod.

Via the universal properties of products and coproducts, we can construct the following bijections

HomC

˜

X,
ź

i

Yi

¸

»
ź

i

HomCpX,Yiq

HomC

˜

ž

i

Xi, Y

¸

»
ź

i

HomCpXi, Y q.

Spring 2015 Problem 1. What are the coproducts in the category of groups?

We will define the free product of a family of groups GiiPI . As a set, ˚iPIGi is all words on the letters
Ť

iPI Gi.
We reduce letters from the same group via the group multiplication. Define the group operation as concatenation.
The identity element is the empty word, concatenation is associative, and the inverse of a reduced word g1 ¨ ¨ ¨ gn is
g´1
n ¨ ¨ ¨ g´1

1 . Thus the free product of a family of groups is a group.
Define the inclusion homomorphisms ij : Gj Ñ ˚kPIGk as ijpgq “ g. We want to show that ˚iPIGi satisfies

the universal property of the coproduct. Let fi : Gi Ñ A be a family of group homomorphisms. For the diagram
below to commute, h : ˚kPIGk Ñ A must be defined as hpgq “ fjpgq for g P Gj . Then we extend h to a group
homomorphism. For a reduced word g1 ¨ ¨ ¨ gn P ˚kPIGk, we have hpg1 ¨ ¨ ¨ gnq “ hpg1q ¨ ¨ ¨hpgnq “ fj1pg1q ¨ ¨ ¨ fpgnq

for gi P Gji . Since h is uniquely determined by the tfjujPI , the free product is the coproduct in the category of
groups.

Gj2

Gj1 ˚kPIGk

A

ij2 fj2
ij1

fj1

h

Fall 2018 Problem 8. Give an example of a diagram of commutative rings whose colimit in the category of
commutative rings is different from its colimit in the larger category of rings (and ring homomorphisms).

We will show that the coproduct of two commutative rings is the tensor product over Z. Let A,B,C be
commutative rings with ring homomorphisms f : A Ñ C and g : B Ñ C. We need hpiApaqq “ hpa b 1q “ fpaq and
hpiBpbqq “ hp1 b bq “ gpbq for a P A and b P B. Extend h to a commutative ring morphism so hpa b bq “ fpaqgpbq
for a b b P A bZ B. Thus h is the unique commutative ring morphism that causes the diagram to commute.

B

A A bZ B

C

iB g
iA

f

h

We will now show that the tensor product over Z is not the coproduct in the category of rings. Let A “ B “

C “ M2pQq and take f “ g “ idM2pQq. Then h : M2pQq bZ M2pQq Ñ M2pQq can be defined as hpa b bq “ ab or
hpa b bq “ ba. These two ring morphisms are not equal since M2pQq is not commutative. Thus M2pQq bZ M2pQq

does not satisfy the universal property of the coproduct.
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Definition 5. A covariant functor F : C Ñ D for categories C and D is a collection of functions ObpCq Ñ ObpDq

and HomCpX,Y q Ñ HomDpF pXq, F pY qq such that

(i) F pidXq “ idF pXq

(ii) F pg ˝ fq “ F pgq ˝ F pfq.

A contravariant functor satisfies F pg ˝ fq “ F pfq ˝ F pgq.

Definition 6. Let F and G be functors C to D. A natural transformation α : F Ñ G is a collection of morphisms
αX : F pXq Ñ GpXq such that for f : X Ñ Y in C, the following diagram commutes.

F pXq GpXq

F pY q GpY q

αX

F pfq Gpfq

αY

Natural transformations are mappings between functors that preserve the structure of the underlying categories.
If we look at the category of functors between C and D, the morphisms would be natural transformations. A natural
isomorphism α : F Ñ G would be an isomorphism on each object X of C.

Example 3. Let X be an object of a locally small category C. Define the functor RX : C Ñ Sets as

RXpY q “ HomCpX,Y q

RXpfqpgq “ f ˝ g

for f : Y Ñ Z and g P HomCpX,Y q. A functor F is represented by X if F is naturally isomorphic to RX .

Lemma 1 (Yoneda). Let C be a locally small category and fix an object X of C. Let F : C Ñ Sets be a functor.
There is a bijection φ : NatpRX , F q Ñ F pXq given by φpαq “ αpidXq.

Yoneda Lemma is possibly the most important result in this section. It tells us that instead of studying
locally small categories, it might be helpful to embed them into the category of functors into Sets. We have some
understanding of the category of Sets that might provide intution about the category C. As a corollary to Yoneda
Lemma, we obtain an isomorphism

NatpRX , RY q » HompY,Xq.

There is a deep relationship between functors represented by X and the object X. One way in which we will use
Yoneda Lemma is the situation where HomCpA,Bq » HomCpC,Bq for all objects B. Yoneda Lemma tells us that
C » A.

Definition 7. Let F : C Ñ D and G : D Ñ C be two functors. We say that F and G form an adjunction pair with
F a left adjoint to G and G a right adjoint to F if

HomDpF pXq, Y q » HomCpX,GpY qq

for all X P ObpCq and Y P ObpDq such that the family of bijections is natural in X and Y .
Alternatively, F and G form an adjunction pair with F a left adjoint to G and G a right adjoint to F if there

are natural transformations ε : FG Ñ 1C and η : 1D Ñ GF such that

F FGF F

G GFG G

Fη εF

ηG Gε

are the identity transformations on F and G respectively. We call ε the counit and η the unit.

Spring 2015 Problem 2. Let C be the category of groups and C1 be its full subcategory with objects the
abelian groups. Let F : C1 Ñ C be the inclusion functor. Determine the left adjoint of F and show that F has no
right adjoint.
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Let f : G Ñ H be a group homomorphism where H is abelian. The commutator subgroup rG,Gs is generated the
subgroup generated by tg1g2g

´1
1 g´1

2 P G g1, g2 P Gu. For g1, g2 P G, we have pg1rG,Gsqpg2rG,Gsq “ g1g2rG,Gs “

g1g2pg´1
2 g´1

1 g2g1qrG,Gs “ g2g1rG,Gs “ pg2rG,Gsqpg1rG,Gsq. Thus G{rG,Gs is an abelian group. Note fpg1g2q “

fpg1qfpg2q “ fpg2qfpg1q “ fpg2g1q and fprG,Gsq “ 0. Since rG,Gs Ă kerpfq, there is a unique abelian group
homomorphism h : G{rG,Gs Ñ H such that ph “ f for projection p : G Ñ G{rG,Gs.

We will define the functor L : C Ñ C1 as LpGq :“ G{rG,Gs for rG,Gs the commutator subgroup. Note that a
morphism of groups f : G Ñ H gives a unique morphism f : G Ñ H{rH,Hs by composing with the projection.
Since H{rH,Hs is an abelian group, the above argument implies f factors uniquely through G{rG,Gs as f “ pg for
p : G Ñ rG,Gs the projection. Note that gparG,Gsq “ fpaqrH,Hs for a P G. Define Lpfq :“ g. Let 1G : G Ñ G
be the identity group homomorphism. Then 1G : G Ñ G{rG,Gs factors uniquely as the identity on G{rG,Gs. We
have Lp1Gq “ 1LpGq. Now let f : G Ñ H and g : H Ñ I be two group homomorphisms. Then gf : G Ñ I gives
Lpgfq “ h for h : G{rG,Gs Ñ I{rI, Is an abelian group homomorphism defined as hparG,Gsq “ pgpfpaqqrI, Is.
Now Lpfq : G{rG,Gs Ñ H{rH,Hs gives LpfqparG,Gsq “ fpaqrH,Hs and Lpgq : H{rH,Hs Ñ I{rI, Is gives
LpgqpfpaqrH,Hsq “ gpfpaqqrI, Is. Thus Lpgfq “ LpgqLpfq and L is a covariant functor.

We want to show that HomCpA,F pBqq and HomC1 pLpAq, Bq are in bijective correspondence for A P ObpCq and
B P ObpC1q and the bijection is functorial in A and B. As we have seen, some f P HomCpA,F pBqq factors uniquely
through LpAq “ A{rA,As since B is an abelian group. Define the natural isomorphism Φ whereby ΦA,Bpfq is this
unique morphism. Thus HomCpA,F pBqq » HomC1 pLpAq, Bq via ΦA,B . Let g : A1 Ñ A be a morphism of groups.
Then we want to show the diagram below commutes. Note that gprA1, A1sq Ă rA,As “ kerpA Ñ A{rA,Asq so Lpgq

factors uniquely through A1{rA1, A1s. We note that Lpgq : A1{rA1, A1s Ñ A{rA,As is this unique morphism. Then
ΦA,Bpfq ˝ Lpgq : A1{rA1, A1s Ñ B descends from f ˝ g : A1 Ñ A Ñ B. By construction, ΦA1,Bpf ˝ gq descends from
f ˝ g. The uniqueness of these morphisms implies ΦA,Bpfq ˝ Lpgq “ ΦA1,Bpf ˝ gq and we are functorial in A. A
similar argument shows the bijection is functorial in B. We conclude that L is a left adjoint to F .

HomCpA,F pBqq HomC1 pLpAq, Bq

HomCpA1, F pBqq HomC1 pLpA1q, Bq

ΦA,B

´˝g ´˝Lpgq

ΦA1,B

We will show that F does not have a right adjoint. We will first prove that a left adjoint functor F preserves
coproducts. Let G be the right adjoint. Let Ai be objects of C and B an object of D. Then

HomC

˜

F

˜

ž

i

Ai

¸

, B

¸

» HomD

˜

ž

i

Ai, B

¸

»
ź

i

HomDpAi, GpBqq

»
ź

i

HomCpF pAiq, Bq

» HomC

˜

ž

i

F pAiq, B

¸

.

By Yoneda Lemma, F p
š

i Aiq »
š

i F pAiq. The coproduct in the category of groups is the free product while the
coproduct in the category of abelian groups is the direct sum. The free product Z ˚ Z is not isomorphic to Z ‘ Z
so F does not have a right adjoint.

Fall 2017 Problem 10. Let C be a category with finite products, and let C2 be the category of pairs of objects
of C together with morphisms pA,A1q Ñ pB,B1q of pairs consisting of pairs pA Ñ B,A1 Ñ B1q of morphisms in C.
Let F : C2 Ñ C be the direct product functor (that takes pairs of objects and morphisms to their products).

(a) Find a left adjoint to F .

Let C,D P ObpCq and f P HomCpC,Dq. Define L : C Ñ C2 as LpCq :“ pC,Cq and Lpfq : LpCq Ñ LpDq

as pf, fq. Then Lp1Cq “ p1C , 1Cq “ 1LpCq. Additionally, Lpgfq “ pgf, gfq “ pg, gq ˝ pf, fq “ LpgqLpfq for a
morphism g P HomCpD,Eq and E P ObpCq. Thus L is a functor.

By the universal property of the direct product, there is a unique morphism h : C Ñ A
ś

B for each pair of
morphisms pf, gq : pC,Cq Ñ pA,Bq such that πA ˝ h “ f and πB ˝ h “ g. Define a natural transformation
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Φ : HomC2pLp´q,´q Ñ HomC2p´, F p´qq so that ΦC,pA,Bq : HomCpLpCq, pA,Bqq Ñ HomC2pC,F pA,Bqq gives
ΦC,pA,Bqpf, gq :“ h. Let k P HomCpC 1, Cq for C 1 P ObpCq. We want to show the following diagram commutes.

HomCpLpCq, pA,Bqq HomC2pC,F pA,Bqq

HomCpLpC 1q, pA,Bqq HomC2pC 1, F pA,Bqq

ΦC,pA,Bq

p´˝k,´˝kq ´˝k

ΦC1,pA,Bq

Let pf, gq P HomCpLpCq, pA,Bqq “ HomCppC,Cq, pA,Bqq. We have ΦC,pA,Bqpf, gq ˝ k is a morphism from
C 1 to A

ś

B for which πA ˝ pΦC,pA,Bqpf, gq ˝ kq “ f ˝ k and πB ˝ pΦC,pA,Bqpf, gq ˝ kq “ g ˝ k. Further,
h :“ ΦC1,pA,Bqpf ˝ k, g ˝ kq is the unique morphism C 1 Ñ A

ś

B that commutes with f ˝ k and g ˝ k under
projection morphisms.

C 1

A
ś

B B

A

h

f˝k

g˝k

πB

πA

Thus the universal property of the direct product implies ΦC,pA,Bqpf, gq ˝ k “ ΦC1,pA,Bqpf ˝ k, g ˝ kq and the
desired diagram commutes. By a similar argument, we obtain naturality in pA,Bq. We conclude that L is a
left adjoint to F .

(b) For C the category of abelian groups, determine whether or not F has a right adjoint.

Since abelian groups is an abelian category, finite products and coproducts are isomorphic. Define R : C Ñ C2

as RpCq :“ pC,Cq and Rpfq :“ pf, fq for f P HomCpC,Dq. Then Rp1Cq “ p1C , 1Cq “ 1RpCq. Additionally,
Rpgfq “ pgf, gfq “ pg, gq ˝ pf, fq “ RpgqRpfq for a morphism g P HomCpD,Eq and E P ObpCq. Thus R is a
functor.

By the universal property of the coproduct, there is a unique morphism h : A
š

B Ñ C for each pair pf, gq :
pA,Bq Ñ pC,Cq such that h˝ iA “ f and h˝ iB “ g. Define the natural transformation Φ : HomC2p´, Rp´qq Ñ

HomCpF p´q,´q as ΦpA,Bq,Cpf, gq :“ h. As in (a), the universal property of the coproduct implies naturality in
pA,Bq and C. We conclude that R is a right adjoint to F .

Fall 2016 Problem 8. Prove that if a functor F : C Ñ Sets has a left adjoint functor, then F is representable.

Let L : Sets Ñ C be the left adjoint to F . Then we know that ΦA,B : HomCpLpAq, Bq » HomSetspA,F pBqq for
some natural isomorphism Φ and A P ObpSetsq and B P ObpCq. Let A :“ t˚u be a set with one element. Then
HomSetspA,F pBqq » F pBq as sets via the morphism hB : HomSetspA,F pBqq Ñ F pBq with hBpαq :“ αp˚q. Thus
HomCpLpAq, Bq » HomSetspA,F pBqq » F pBq for all B P ObpCq.

Define a natural transformation ηB : HomCpLpAq, Bq Ñ F pBq by ηBpfq :“ ΦA,Bpfqp˚q. Since ΦA,B is an
isomorphism and HomSetspA,F pBqq » F pBq by choosing the image of ˚ P A, we conclude that ηB is an isomorphism
for each B P ObpCq. Let f P HomCpLpAq, Bq, and let g : B Ñ C be a morphism in C for C P ObpCq. We want to show
the diagram below commutes. Since Φ is a natural transformation, the square on the left commutes. The square on
the right commutes since F pgqphBpαqq “ F pgqpαp˚qq and hCpF pgq ˝ αq “ pF pgq ˝ αqp˚q for α P HomSetspA,F pBqq.
Therefore, the diagram commutes. We conclude that F is represented by LpAq P ObpCq.

HomCpLpAq, Bq HomSetspA,F pBqq F pBq

HomCpLpAq, Cq HomSetspA,F pCqq F pCq

ΦA,B

ηB

g˝´ F pgq˝´

hB

F pgq

ΦA,C

ηC

hC
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Definition 8. An initial object of a category C is an object I such that, for every object X of C, there exists one
and only one morphism I Ñ X. A terminal object of a category C is an object T such that, for every object X of
C, there is one and only one morphims X Ñ T .

Spring 2016 Problem 2. Consider the functor F from commutative rings to abelian groups that takes a
commutative ring R to the group R˚ of invertible elements. Does F have a left adjoint? Does F have a right
adjoint? Justify your answers.

We will show that F has a left adjoint. Define the functor L : Ab Ñ CRing as LpAq “ ZrAs, the group ring
over Z. For an abelian group morphism f : X Ñ Y , we define Lpfq : ZrXs Ñ ZrY s as Lpfqpxq “ fpxq and extend
Z-linearly. Note that Lpfq is well-defined since x P X is a unit in ZrXs and it maps to a unit in ZrY s. Additionally,
Lpfq is a unique commutative ring morphism that agrees with f on X since Z is initial in CRings. Let 1X : X Ñ X
be the identity morphism. Then Lp1Xqp

ř

xPX axxq “
ř

xPX axx and Lp1Xq “ 1LpXq for ax P Z. Let f : X Ñ Y and
g : Y Ñ Z be two abelian group morphisms. Then Lpgfqp

ř

xPX axxq “
ř

xPX axgpfpxqq “ Lpgqp
ř

xPX axfpxqq “

LpgqpLpfqp
ř

xPX axxqq for ax P Z. Thus Lpgfq “ LpgqLpfq and L is a functor.
We want to show that L is a left adjoint to F . Let f : A Ñ F pBq be an abelian group morphism for

A P ObpAbq and B P ObpCRingq. Define a natural transformation ΦA,B : HomAbpA,F pBqq Ñ HomCRingpLpAq, Bq

by ΦA,Bpfqpxq “ fpxq and extend Z-linearly. By above, this is well-defined and the unique commutative ring
morphism that agrees with f on X. Since units must map to units in a commutative ring morphism, every
h P HomCRingpLpAq, Bq restricts to a morphism in HomAbpA,F pBqq. Thus ΦA,B is a bijection. We want to show
that the bijection is functorial in A and B. Let g : A1 Ñ A be a morphism of abelian groups. We want the diagram
below to commute. Let f P HomAbpA,F pBqq as before. Then ΦA,Bpfq ˝ Lpgq : LpA1q Ñ B extends the morphism
f ˝ g : A1 Ñ F pBq. By definition, ΦA1,Bpf ˝ gq is also a morphism that extends f ˝ g. The uniqueness in our choices
of this morphism implies ΦA,Bpfq ˝Lpgq “ ΦA1,Bpf ˝ gq and the diagram commutes. The argument for B is similar
so the bijection is functorial in A and B. Therefore, L is a left adjoint to F .

HomAbpA,F pBqq HomCRingpLpAq, Bq

HomAbpA1, F pBqq HomCRingpLpA1q, Bq

ΦA,B

´˝g ´˝Lpgq

ΦA1,B

We will now show that left adjoints preserve initial objects. Let L : C Ñ D and R : D Ñ C be an adjoint
pair. Let A P ObpCq be an initial object. Then HomDpLpAq, Bq » HomCpA,RpBqq for any B P ObpDq. But A
initial in C implies HomCpA,RpBqq has only one element. We conclude that HomDpLpAq, Bq has only one element
and LpAq is initial in D. We want to show that F does not have a right adjoint. We note that Z is initial in
CRings, but F pZq » t˘1u » Z{2Z since ˘1 are the only units in Z. The abelian group Z{2Z is not initial since
HomAbpZ{2Z,Z{2Zq has two elements, the trivial morphism and an isomorphism. Thus F cannot have a right
adjoint.

Definition 9. Alternatively, F and G form an adjunction pair with F a left adjoint to G and G a right adjoint to
F if there are natural transformations ε : FG Ñ 1C and η : 1D Ñ GF such that

F FGF F

G GFG G

Fη εF

ηG Gε

are the identity transformations on F and G respectively. We call ε the counit and η the unit.

To derive the unit and counit from our earlier definition, note that an adjoint pair F : C Ñ D and G : D Ñ C
defines a natural transformation of functors

HomDpF p´q,´q Ñ HomCp´, Gp´qq.

For an object X in C, we obtain a morphism

HomDpF pXq, F pXqq Ñ HomCpX,GpF pXqqq.

that sends idF pXq to a morphism X Ñ GpF pXqq. There is a similar setup for an object Y in D. These adjunction
maps are functorial in X and Y so we obtain the unit and counit described above.
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Definition 10. Let F : C Ñ D be a functor of locally small categories. Define the set map

φX,Y : HomCpX,Y q Ñ HomDpF pXq, F pY qq

to be φX,Y pfq “ F pfq for any two objects X and Y of C. The functor F is faithful if φX,Y is injective for each
pair of objects. The functor F is full if φX,Y is surjective for each pair of objects.

Fall 2018 Problem 7. Let F : C Ñ D be a functor with a right adjoint G. Show that F is fully faithful if and
only if the unit of the adjunction η : IdC Ñ GF is an isomorphism.

Let ε : FG Ñ 1D be the counit of the adjunction. (ñ) Assume F is fully faithful. We will show that ηY : Y Ñ

GF pY q is an isomorphism. Let f, g : X Ñ Y be morphisms in C such that ηY ˝ f “ ηY ˝ g. By the adjunction,
HomCpX,GF pY qq » HomDpF pXq, F pY qq so ηY ˝f and ηY ˝g map to the same morphism h : F pXq Ñ F pY q. Since
F is fully faithful, FX,Y : HomCpX,Y q Ñ HomDpF pXq, F pY qq. Thus f “ g and ηY is left cancellative. Since F is
full, we have h : GF pXq Ñ X such that F phq “ εF pXq for each X P ObpCq. Then

εF pXq ˝ F pηX ˝ hq “ pεF pXq ˝ F pηXqq ˝ F phq “ F phq “ εF pXq “ εF pXq ˝ F p1Xq

for all X P ObpCq. Note that F is faithful so ηX ˝ h “ 1X and ηX is right cancellative. We conclude η is an
isomorphism.

(ð) Assume η is an isomorphism. Let f P HomCpX,Y q. Since ηY is an isomorphism, ηY ˝ ´ is a natural
isomorphism HomCpX,Y q » HomCpX,GF pY qq. Via the adjunction, εF pY q˝F pηY ˝fq “ εF pY q˝F pηY q˝F pfq “ F pfq.
As a result, HomCpX,Y q » HomCpX,GF pY qq » HomDpF pXq, F pY qq via FX,Y and F is fully faithful.

X F pXq

Y GF pY q F pY q FGF pY q F pY q

f
ηY ˝f

F pηY ˝fq

F pfq

ηY F pηY q εF pY q

Definition 11. A monomorphism is a left-cancellative morphism. In other words, f is a monomorphism if

pf ˝ g1 “ f ˝ g2q ñ pg1 “ g2q

for all suitable morphisms g1 and g2. An epimorphism is a right-cancellative morphism. In this case, g is an
epimorphism if

pf1 ˝ g “ f2 ˝ gq ñ pf1 “ f2q

for all suitable morphisms f1 and f2.

Monomorphisms are the categorical analog of injective functions while epimorphisms are the categorical analog
of surjective functions.

Fall 2015 Problem 1. Show that the inclusion Z Ñ Q is an epimorphism in the category of rings with
multiplicative identity.

We want to show that f : Z Ñ Q is right cancellative. Let g, h : Q Ñ R be ring homomorphisms such that
gf “ hf for R a ring with identity. For a, b P Z we have

g
´a

b

¯

“ gpaqgpb´1q “ gpaqgpbq´1 “ hpaqhpbq´1 “ h
´a

b

¯

since gpaq “ gpfpaqq “ hpfpaqq “ hpaq for all a P Z. We conclude g “ h and f is an epimorphism
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Spring 2018 Problem 5. Let C be a category. A morphism f : A Ñ B in C is called an epimorphism if for
any two morphisms g, h : B Ñ X in C, g ˝ f “ h ˝ f implies g “ h. Let ALG be the category of Z-algebras, and
let MOD be the category of Z-modules.

(a) Prove that in MOD, f : M Ñ N is an epimorphism if and only if f is a surjection.

(ñ) We will prove the contrapositive. Assume that f : M Ñ N is not surjective. Then impfq Ă N is a proper
Z-submodule. We define π : N Ñ N{impfq the canonical projection and g : N Ñ N{impfq the zero Z-module
homomorphism. Then gf and πf are zero maps so gf “ πf . Let n P N such that n R impfq. Then g ‰ π since
gpnq “ 0 ` impfq while gpnq “ n ` impfq ‰ 0 ` impfq. We conclude that f is not an epimorphism

(ð) Let f : M Ñ N be surjective. Let g, h : N Ñ P be Z-module homomorphisms such that gf “ hf . Let
n P N , then n “ fpmq for some m P M . As a result, gpnq “ gpfpmqq “ hpfpmqq “ hpnq so g “ h. We conclude
that f is right-cancellative and f is an epimorphism.

(b) In ALG, does the equivalence of epimorphism and surjection hold? If yes, prove the equivalence, and if no,
give a counterexample (as simple as possible).

Let i : Z Ñ Q be the canonical inclusion morphism of Z-algebras. By Fall 2015 Problem 1, this morphism is a
non-surjective epimorphism.

In more recent years, there have been problems about abelian categories. The prototypical example of an abelian
category is R-Mod for a ring R. If the finite product and finite coproduct constructions are isomorphic in a category,
we refer to the operation as a direct sum. As an example, see the direct sum in Ab.

Definition 12. An object that is both initial and terminal is a zero object.

Definition 13. An additive category is a category admitting a zero object, any two pairs of objects admits a direct
sum, and every Hom set has an abelian group structure.

Definition 14. The kernel of a morphism f : X Ñ Y is an object kerpfq together with a morphism i : kerpfq Ñ X
that satisfies the following universal property. If there is a morphism gX : Z Ñ X such that f ˝ g “ 0Z,Y , then
there is a unique morphism u : Z Ñ kerpfq such that g “ i ˝ u.

X

kerpfq Y

Z

f

0

i
g

0

u

The dual notion (where we flip the arrows) is a cokernel of f : X Ñ Y denoted cokerpfq.

In a category like R-Mod, the categorical kernel of a morphism f : X Ñ Y is an equivalent notion to that of
our standard element-wise kernel. Further, the cokernel can be thought of as Y {impfq.

Definition 15. An abelian category is an additive category in which each morphism has a kernel and cokernel and,
for each f : X Ñ Y , the canonical morphism cokerpkerpfqq Ñ kerpcokerpfqq is an isomorphism.

The purpose of abelian categories is that it is the most general setting in which we can discuss exact sequences.
Homological algebra is the study of abelian categories.

Definition 16. An object P is projective if for any epimorphism e : E Ñ X and morphism f : P Ñ X, there is a
morphism g : P Ñ E such that e ˝ g “ f .

P

E X

f
g

e

Definition 17. An object P is injective if for any monomorphism m : X Ñ Y and morphism g : X Ñ Q, there is
a morphism h : Y Ñ Q such that h ˝ m “ g.
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X Y

Q

m

g
h

Example 4. In the category of abelian groups, the projective objects are free abelian groups. The injective objects
in the category of abelian groups are necessarily divisible. Assuming the axiom of choice, every divisible group is
injective.

Spring 2019 Problem 10. Let C be an abelian category. Prove TFAE:

(1) Every object of C is projective.

(2) Every object of C is injective.

p1q ñ p2q: Assume that every object is projective. Let m : X Ñ Y be a monomorphism for which there is a
morphism g : X Ñ Q. We can build the short exact sequence

0 X Y C 0
f q

where C “ cokerpmq. We have the diagram

C

Y C.

1C

q

The morphism C Ñ Y guaranteed by C projective is a splitting. In an abelian category left and right split are
equivalent so there is a morphism s : Y Ñ X such that s ˝ m “ 1X . Define h “ g ˝ s and

h ˝ m “ pg ˝ sq ˝ m “ g ˝ ps ˝ mq “ g.

Thus Q is injective.
p1q ð p2q: Make a similar argument since a short exact sequence will split with an injective first entry.
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